首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimal controls are constructed for two types of mobile systems propelling themselves due to relative oscillatory motions of their parts. The system of the first type is modelled by a rigid body (main body) to which two links are attached by revolute joints. All three bodies interact with the environment with the forces depending on the velocity of motion of these bodies relative to the environment. The system is controlled by high-frequency periodic angular oscillations of the links relative to the main body. The system of the other type consists of two bodies, one of which (the main body) interacts with the environment and with the other body (internal body), which interacts with the main body but does not interact with the environment. The system is controlled by periodic oscillations of the internal body relative to the main body. For both systems, the motions with the main body moving along a horizontal straight line are considered. Optimal control laws that maximize the average velocity of the main body are found.  相似文献   

2.
The optimal control of the motion of a system consisting of a main body and one or two links joined to it by cylindrical joints in a resistive medium is investigated. The resistance force of the medium acting on the moving body is assumed to depend on their velocity. The control is accomplished through high-frequency angular oscillations of the links. The equations of motion are analysed, and the mean velocity of translational motion of the system is estimated under certain assumptions. Optimal control problems are formulated and solved, and the laws of control of the oscillations of the links for which the maximum mean velocity of motion is obtained are found as a result. The data obtained are in qualitative agreement with observations of the swimming of fish and animals. The results of this study can be used in developing mobile robots that move in a liquid.  相似文献   

3.
A material system consisting of an outer rigid body (a shell) and an inner body (a material point) is considered. The system moves in a uniform field of gravity over a fixed absolutely smooth horizontal plane. The central ellipsoid of inertia of the shell is an ellipsoid of rotation. The material point moves according to the harmonic law along a straight-line segment rigidly attached to the shell and lying on its axis of dynamical symmetry. During its motion, the shell may collide with the plane. The coefficient of restitution for an impact is supposed to be arbitrary. The periodic motion of the shell is found when its symmetry axis is situated along a fixed vertical, and the shell rotates around this vertical with an arbitrary constant angular velocity. The conditions for existence of this periodic motion are obtained, and its linear stability is studied.  相似文献   

4.
A method for shaping the control of the rotation of a gyrostat consisting of a rigid body, within which there are three rotors rotating about non-coplanar axes rigidly connected to the body, is discussed. The state of the system is defined by the position and angular velocity of rotation of the body, as well as by the angular velocities of the rotors. Control is achieved by torques applied to the rotors. The idea behind the proposed control method is to choose the controlling torques so that the angular velocities of rotation of the rotors are linear functions of the components of the angular velocity vector of the body. The linear dependence thus specified defines a 3 × 3 matrix, that is, a “controlled inertia tensor.” This matrix, which is specified by the parameters of the control selected, does not necessarily have the properties of an inertia tensor. As a result of such a choice of controls, the equations that define the variation of the angular velocity of the body are written in a form similar to Euler's dynamical equations. The system of equations obtained is used to formulate and solve problems of controlling the angular motion of a satellite in a circular orbit. The proposed method for constructing controlling actions enables both the Lagrangian structure of the equations of motion and the fundamental symmetries of the problem to be maintained. Expressions for the torques acting on the rotors and realizing the motion of the required classes are written in explicit form.  相似文献   

5.
The motion of an absolutely rigid body attached to a fixed base by a two-degrees-of-freedom joint in a uniform gravitational field parallel to the fixed axis of the joint is studied qualitatively. Various kinds of motion are described and analysed, depending on the total mechanical energy and the projection of the angular momentum of the body onto the fixed axis of the joint as well as on the inertial parameters of the system.

This paper is a continuation of [1].  相似文献   


6.
The rotation of an elastic manipulator arm about one of its ends in the horizontal plane is investigated. A load is attached to the other end. The motion is effected by an electric motor. The control is constructed in the form of linear feedback on the position of the load, its velocity, and the angular velocity of the arm. The stability of the control process is investigated. It is shown that when there are no viscous damping forces proportional to the angular velocity of the arm, load position and velocity feedback leads to undamped oscillations of the system and the desired equilibrium position is not stabilized. Asymptotic stability domains in the feedback coefficient space when viscous damping is present are constructed. Comparison shows these domains to be smaller than corresponding domains for a completely rigid body.  相似文献   

7.
Locomotion of a mechanical system consisting of two rigid bodies, a main body and a tail, is considered. The system moves in a resistive fluid and is controlled by angular oscillations of the tail relative to the main body. The resistance force acting upon each body is assumed to be a quadratic function of its velocity. Under certain assumptions, a nonlinear equation is derived that describes the progressive motion of the system as a whole.  相似文献   

8.
We examine the motions of an autonomous Hamiltonian system with two degrees of freedom in a neighborhood of an equilibrium point at a 1:1 resonance. It is assumed that the matrix of linearized equations of perturbed motion is reduced to diagonal form and the equilibrium is linearly stable. As an illustration, we consider the problem of the motion of a dynamically symmetric rigid body (satellite) relative to its center of mass in a central Newtonian gravitational field on a circular orbit in a neighborhood of cylindrical precession. The abovementioned resonance case takes place for parameter values corresponding to the spherical symmetry of the body, for which the angular velocity of proper rotation has the same value and direction as the angular velocity of orbital motion of the radius vector of the center of mass. For parameter values close to the resonance point, the problem of the existence, bifurcations and orbital stability of periodic rigid body motions arising from a corresponding relative equilibrium of the reduced system is solved and issues concerning the existence of conditionally periodic motions are discussed.  相似文献   

9.
We study a model of the synchronous electric motor, which is described by a system of ordinary differential equations, including equations for electric currents in the windings of the rotor. The load moment is assumed to be a nonlinear function of the angular velocity of the rotor, allowing a linear estimate. The system of differential equations under consideration has a countable number of stationary solutions corresponding to the operating mode of uniform rotation of the rotor with the angular velocity equal to the angular velocity of rotation of the magnetic field in the stator. An effective sufficient condition is derived under which any motion of the rotor of the synchronous electric motor tends with time to uniform rotation.  相似文献   

10.
Summary If a rotating, massless, elastic shaft carrying a disk is supported at the ends by Cardan links, the motion of the disk depends on the angles at the joints and the torques transmitted by the joints. The system is considered for constant angular velocity and constant torques of the driving shafts. The investigation of this nonstationary system leads to two second order differential equations with periodic coefficients. In order to establish conditions for instability the characteristics exponents are calculated by means of generalized Hills determinants. It is found that there exist critical intervals for the angular velocity.  相似文献   

11.
The rectilinear motion of a two-mass system in a resistive medium is considered. The motion of the system as a whole occurs by longitudinal periodic motion of one body (the internal mass) relative to the other body (the shell). The problem consists of finding the periodic law of motion of the internal mass that ensures velocity-periodic motion of the shell at a specified average velocity and minimum energy consumption. The initial problem reduces to a variational problem with isoperimetric conditions in which the required function is the velocity of the shell. It is established that, with optimal motion, the shell velocity is a piecewise-constant time function taking two values (a positive value and a negative value). The magnitudes of these velocities and the overall size of the intervals in which they are taken are uniquely defined, while the optimal motion itself is non-uniquely defined. The simplest optimal motion, for which the period is divided into two sections – one with a positive velocity and the other with a negative velocity of motion of the shell – is investigated in detail. It is shown that, among all the optimal motions, this simplest motion is characterized by the maximum amplitude of oscillations of the internal mass relative to the shell. © Elsevier Ltd. All rights reserved.  相似文献   

12.
Some qualitative analysis is carried out of the rectilinear and spatial problems concerning the motion of a rigid body in a resisting medium.Anonlinearmodel is constructed of impact of the mediumon the rigid body, which takes into account the dependence of the arm of force on the reduced angular velocity of the body. Moreover, the moment of this force itself is also a function of the angle of attack. As was shown by the processing the experimental data on the motion of homogeneous circular cylinders in water, these circumstances should be taken into account in the simulation. The analysis of the plane and spatial models of the interaction of a rigid body with a medium reveal the sufficient conditions of stability of the key regime of motion, i.e., the translational rectilinear deceleration. It is also shown that, under certain conditions, both stable or unstable auto-oscillating regimes can be presented in the system.  相似文献   

13.
Maxim V. Shamolin 《PAMM》2014,14(1):311-312
In this activity the qualitative analysis of spatial problems of the real rigid body motions in a resistant medium is fulfilled. A nonlinear model that describes the interaction of a rigid body with a medium and takes into account (based on experimental data on the motion of circular cylinders in water) the dependence of the arm of the force on the normalized angular velocity of the body and the dependence of the moment of the force on the angle of attack is constructed. An analysis of plane and spatial models (in the presence or absence of an additional tracking force) leads to sufficient stability conditions for translational motion, as one of the key types of motions. Either stable or unstable self-oscillation can be observed under certain conditions. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The motion of a satellite, i.e., a rigid body, about to the centre of mass under the action of the gravitational moments of a central Newtonian gravitational field in an elliptical orbit of arbitrary eccentricity is investigated. It is assumed that the satellite is almost dynamically symmetrical. Plane periodic motions for which the ratio of the average value of the absolute angular velocity of the satellite to the average motion of its centre of mass is equal to 3/2 (Mercury-type resonance) are examined. An analytic solution of the non-linear problem of the existence of such motions and their stability to plane perturbations is given. In the special case in which the central ellipsoid of inertia of the satellite is almost spherical, the stability to spatial perturbations is also examined, but only in a linear approximation. ©2008.  相似文献   

15.
A mechanical system consists of an unchangeable rigid body (a carrier) and a subsystem whose configuration and composition may vary with time (the motion of its elements relative to the carrier is given). The free motion of the system in a uniform gravitational field is investigated, on the assumption that there is no dynamic symmetry. Necessary and sufficient conditions are derived for the existence of two integrals, each quadratic in the components of the absolute angular velocity of the carrier. Lt is shown that the initial dynamical system can be reduced to an autonomous gyrostat system if and only if the motion has these two quadratic integrals; the explicit form of a linear transformation to the autonomous system is indicated. The explicit form of the integrals and conditions for their existence are obtained. Examples of motion with two quadratic integrals are considered.  相似文献   

16.
Summary The incompressible boundary layer growth on a body of revolution in spinning motion when the outer flow and the angular velocity of the body are expressed in powers series of √t is studied. Series at small time are established for the velocity. A simple application is presented in the case of a sphere and the separation characteristics are studied. Entrata in Redazione il 23 novembre 1970.  相似文献   

17.
The motion of a system (a rigid body, symmetrical about three mutually perpendicular planes, plus a point mass situated inside the body) in an unbounded volume of a perfect fluid, which executes vortex-free motion and is at rest at infinity, is considered. The motion of the body occurs due to displacement of the point mass with respect to the body. Two cases are investigated: (a) there are no external forces, and (b) the system moves in a uniform gravity field. An analytical investigation of the dynamic equations under conditions when the point performs a specified plane periodic motion inside the body showed that in case (a) the system can be displaced as far as desired from the initial position. In case (b) it is proved that, due to the permanent addition of energy of the corresponding relative motion of the point, the body may float upwards. On the other hand, if the velocity of relative motion of the point is limited, the body will sink. The results of numerical calculations, when the point mass performs random walks along the sides of a plane square grid rigidly connected with the body, are presented.  相似文献   

18.
A kinematic interpretation of the motion of a rigid body with a fixed point is proposed using the rolling of a mobile hodograph, which describes, on the ellipsoid of inertia, a vector collinear with the vector of the angular velocity of the body, with respect to a fixed vector. On the basis of this, an interpretation of the motion of the body in the Steklov, Grioli, Dokshevich and Bobylev – Steklov solutions is obtained. A new formula is derived indicating the connection between the angle of precession and the polar angle of the equations of the fixed hodograph, indicated by Kharlamov.  相似文献   

19.
Conditionally periodic solutions are constructed in the neighbourhood of previously derived steady-state solutions of the problem of the motion of a material point in the attraction field of a rotating triaxial ellipsoid, when the average motion of the material point and the ellipsoid angular velocity of rotation are commensurable.  相似文献   

20.
An initial value investigation is made of the motion of an incompressible, viscoelastic, conducting Oldroyd-B fluid bounded by an infinite rigid non-conducting plate. Both the plate and the fluid are in a state of solid body rotation with a constant angular velocity about an axis normal to the plate. The flow is generated from rest in the rotating viscoelastic system due to harmonic oscillations of a given frequency superimposed on the plate in presence of a transverse magnetic field. The exact solutions for the velocity field and the wall shear stress are obtained. The results are examined quantitatively for a particular case of an impulsively moved plate and the effects of various flow parameters on them are discussed. Many known results are found to emerge as limiting cases of the present analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号