首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宗智  赵勇  邹文楠  高云 《计算物理》2009,26(6):842-848
以涡量方程为控制方程,模拟初始状态涡量分布为高斯分布三个涡旋演化过程.提出一个关联实际流动的小波系数临界值,小波系数分为临界值以上及以下部分,进而涡量可分成尺度系数项、小波系数突出项和小波系数平凡项三部分.只采用尺度系数项和小波系数突出项近似涡量,既可以节约计算量,还可以自动追踪绝大部分的拟涡能.数值结果表明,用不到10%的小波系数,可控制99%以上的拟涡能.  相似文献   

2.
We introduce boundary adapted wavelets, which are orthogonal and have the same scale in the three spatial directions. The construction thus yields a multiresolution analysis. We analyse direct numerical simulation data of turbulent channel flow computed at a friction Reynolds number of 395, and investigate the role of coherent vorticity. Thresholding of the vorticity wavelet coefficients allows us to split the flow into two parts, coherent and incoherent flows. The coherent vorticity is reconstructed from its few intense wavelet coefficients and the coherent velocity is reconstructed using Biot–Savart's law. The statistics of the coherent flow, i.e. energy and enstrophy spectra, are close to the statistics of the total flow, and moreover, the nonlinear energy budgets of the total flow are very well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e. noise-like, background flow whose energy is equidistributed.  相似文献   

3.
Li H.  Zhou Y. 《显形杂志》2002,5(4):343-354
The effects of initial conditions on turbulence structures of various scales in a near wake have been investigated for two wake generators with the same characteristic dimension, i.e., a circular cylinder and a screen of 50% solidity, based on the wavelet multi-resolution analysis. The experimental investigation used two orthogonal arrays of sixteen X-wires, eight in the (x, y)-plane, and eight in the (x, z)-plane. Measurements were made atx/h (x is the streamwise distance downstream of the cylinder andh is the height of the wake generator) = 20. The wavelet multi-resolution technique was applied to decomposing the velocity data, obtained in the wakes generated by the two generators, into a number of wavelet components based on the central frequencies. The instantaneous sectional streamlines and vorticity field were thus ‘visualized’ for each wavelet component or central frequency. It was found that the behavior of large- and intermediate-scale structures depend on the initial conditions and the small-scale structures are independent of the initial conditions. The contributions from the wavelet components to the time-averaged Reynolds stresses and vorticity were estimated. Both the large-scale and intermediate longitudinal structures make the most significant contributions to Reynolds stresses in the circular cylinder wake, but the contribution from the large-scale structures appears dominating in the screen wake. The relatively small scale structures of the circular cylinder wake contribute most to the total rms spanwise vorticity.  相似文献   

4.
A complete solution is obtained for the two-dimensional diffraction of a time-harmonic acoustic plane wave by an impenetrable elliptic cylinder in a viscous fluid. Arbitrary size, ellipticity, and angle of incidence are considered. The linearized equations of viscous flow are used to write down expressions for the dilatation and vorticity in terms of products of radially and angular dependent Mathieu functions. The no-slip condition on the rigid boundary then determines the coefficients. The resulting computations are facilitated by recently developed library routines for complex input parameters. The solution for the circular cylinder serves as a guide and a differently constructed solution for the strip is also given. Typical results in the "resonant" range of dimensionless wave number, displaying the surface vorticity and the far-field scattering pattern are included, with the latter allowing comparison with the inviscid case.  相似文献   

5.
《Physics letters. A》2020,384(2):126060
The modulational instability of two-dimensional nonlinear traveling-wave solutions of the Whitham equation in the presence of constant vorticity is considered. It is shown that vorticity has a significant effect on the growth rate of the perturbations and on the range of unstable wavenumbers. Waves with kh greater than a critical value, where k is the wavenumber of the solution and h is the fluid depth, are modulationally unstable. This critical value decreases as the vorticity increases. Additionally, it is found that waves with large enough amplitude are always unstable, regardless of wavelength, fluid depth, and strength of vorticity. Furthermore, these new results are in qualitative agreement with those obtained by considering fully nonlinear solutions of the water-wave equations.  相似文献   

6.
Classical statistical theories of turbulence have shown their limitations, in that they cannot predict much more than the energy spectrum in an idealized setting of statistical homogeneity and stationarity. We explore the applicability of a conditional statistical modeling approach: can we sort out what part of the information should be kept, and what part should be modeled statistically, or, in other words, “dissipated”? Our mathematical framework is the initial value problem for the two-dimensional (2D) Euler equations, which we approximate numerically by solving the 2D Navier-Stokes equations in the vanishing viscosity limit. In order to obtain a good approximation of the inviscid dynamics, we use a spectral method and a resolution going up to 81922. We introduce a macroscopic concept of dissipation, relying on a split of the flow between coherent and incoherent contributions: the coherent flow is constructed from the large wavelet coefficients of the vorticity field, and the incoherent flow from the small ones. In previous work, a unique threshold was applied to all wavelet coefficients, while here we also consider the effect of a scale by scale thresholding algorithm, called scale-wise coherent vorticity extraction. We study the statistical properties of the coherent and incoherent vorticity fields, and the transfers of enstrophy between them, and then use these results to propose, within a maximum entropy framework, a simple model for the incoherent vorticity. In the framework of this model, we show that the flow velocity can be predicted accurately in the L2 norm for about 10 eddy turnover times.  相似文献   

7.
本文使用PIV术对低高速侧速比为0.25、0.33和0.5时竖直通道内的混合层流动进行实验研究,基于速度差和通道水力直径的雷诺数范围15840~132000.研究发现混合层内湍流参数的分布不仅和雷诺数有关,还和速比有关.混合层内同一横截面上平均雷诺应力的最大值随雷诺数的增大而增大,而在同一横截面上相同雷诺数时雷诺应力的最大值则随速比的增大而减小.在同一横截面上平均涡量随雷诺数的增大而增大,雷诺数相同时平均涡量的最大值随速比的增大而增大.无量纲平均涡量的最大值随混合层的发展按指数规律衰减,速比越大衰减速度越快.  相似文献   

8.
The problem of evaluating the boundary values of the vorticity in the calculation of two-dimensional viscous flows is considered. It is shown that the splitting of the fourth-order equation for the stream function into two second-order problems implies specific integral conditions which fix the abstract projection of the vorticity field with respect, to the linear manifold of the harmonic functions. These conditions are a direct consequence of the boundary conditions on the velocity, and ensure satisfaction of physically essential conservation laws for the vorticity. The discrete analogue of, the projection conditions produces as many algebraic equations as the number of boundary points and requires the solution of an equal number of Dirichlet problems. In the particular case of stationary linearized equations (Stokes equations) a direct, i.e., noniterative method of solution is obtained. Steady and unsteady computational schemes relying on the projection conditions on the vorticity are introduced and extensive numerical results of finite difference calculations of the driven-cavity model problem are reported and discussed.  相似文献   

9.
We develop an asymptotic theory describing nonlocal effects caused by weak-diffusion processes in the case of resonant interaction of quasi-harmonic waves of small but finite amplitudes with flows of various physical nature in the case of an arbitrary relation between the nonlinearity and diffusion.We analyze the interaction of internal gravity waves with plane-parallel stratified shear flows in the nonlinearly-dissipative critical layer (CL) formed in the vicinity of the resonance level where the flow velocity is equal to the phase velocity of the wave. It is shown that the combined effect of the radiation force in the inner region of the CL and vorticity diffusion to the outer region results in the formation of a flow in which the asymptotic values of average vorticity at different sides of the CL are constant but different. If the criterion of the linear dynamic stability is satisfied (the Richardson number Ri>1/4), the resulting vorticity steps are comparable to the unperturbed vorticity. As a result, a wave reflected from the vorticity inhomogeneity in the CL is formed. As the amplitude of the incident wave increases, the average vorticity at the incidence side approaches the linear-stability threshold (Richardson number Ri > 1/4), and the reflection coefficient tends to -1.In the regime of nonlinear dissipative CL, we study the quasi-stationary asymptotic behavior of the flow formed by an internal gravity wave incident on a dynamically stable flow with velocity and density stratification, whose velocity at some level is equal to the phase velocity of the wave. It is shown that the vorticity diffusion results in the formation of a nonlocal transition region between the CL and the unperturbed flow, which we call the diffusive boundary layer (DBL). In this case, the CL is shifted toward the incident wave. We obtain a self-similar solution for the average fields, which is valid in the case of a constant vorticity step in the CL, and determine its parameters depending on the inner Reynolds number in the CL which describes the relation between the nonlinear and diffusive effects for the wave field in the resonance region. We determine the structure and temporal dynamics of the DBL formed by a rough surface streamlined by a stratified fluid whose velocity changes direction at some level.It is shown that in the case of the nonlinear resonance interaction of plasma electrons with a Langmuir wave, the electron diffusion in the velocity space leads to a significant nonlocal distortion of the electron distribution function outside the trapping region. We determine the distorted distribution function and calculate the rate of the nonlinear Landau damping of a finite-amplitude wave for an arbitrary ratio of the electron collision rate and the oscillation period of trapped electrons.  相似文献   

10.
Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.  相似文献   

11.
We use singular value decomposition techniques to generalize the wavelet transform modulus maxima method to the multifractal analysis of vector-valued random fields. The method is calibrated on synthetic multifractal 2D vector measures and monofractal 3D fractional Brownian vector fields. We report the results of some application to the velocity and vorticity fields issued from 3D isotropic turbulence simulations. This study reveals the existence of an intimate relationship between the singularity spectra of these two vector fields which are found significantly more intermittent than previously estimated from longitudinal and transverse velocity increment statistics.  相似文献   

12.
This work investigates the impact of the background turbulence generated by randomly placed cylinders on the vortex shedding regime and the mechanisms associated to vorticity fluxes. The goals are achieved by exploring velocity databases acquired with a two-dimensional particle image velocimetry system in two types of turbulent flow experiments: flow around a single infinite cylinder and flow within random array of infinite cylinders. Formation lengths, power spectral density functions and vortex distributions are employed to discuss the vortex shedding regime. The effects of background turbulence and vorticity cancellation, due to opposite sign vorticity, on the vorticity fluxes are discussed. The results show that the background turbulence reduces the formation length and consequently increase the shedding frequency. The stronger decay of longitudinal vorticity flux in denser arrays is not accompanied by an increase of the lateral flux of vorticity. Furthermore, it was concluded that the decay of longitudinal vorticity flux is mainly caused by the vorticity cancellation due to the vorticity of opposite sign of close downstream cylinders.  相似文献   

13.
The collection efficiency of aerosols in the low Knudsen number region was studied using a system of multiple spheres. Kuwabara's free vorticity model was expanded to include the effects of gas slip at the collector surface, with the collection efficiency due to diffusion obtained analytically and compared with existing experimental results. The results showed that the diffusional collection efficiency increases as the Knudsen number increases due to gas slippage at the collector surface. The obtained analytical solution converged to the existing collection efficiency of a solid sphere system with a Knudsen number of zero, and that of a bubble with an infinite Knudsen number. The comparison of the experimental results with analytic solution in this study shows that the trends agree well. Therefore, this study is a subsequent expansion of the collection efficiency in the finite Knudsen number region, and can be used for a broad range of collector sizes, pressures and temperatures.  相似文献   

14.
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.  相似文献   

15.
林黎明 《物理学报》2020,(3):188-198
钝体是目前各种工程中广泛应用的一种结构.钝体绕流的尾迹涡动力学也是经典的流体力学研究对象之一.本文通过直接数值模拟,针对低雷诺数下各种钝体结构的不可压缩绕流,当形成三维尾迹时,研究具有特定符号的涡量分布特征.通过分析两类钝体结构,基本的直柱体和受到几何扰动的柱体,总结并得到了更为广泛适用的涡量符号律.通过对比并分析这两类钝体结构,结合理论证明的结果,进一步厘清了对产生涡量符号律的这两类钝体结构之间的内在物理关联,即引起自然失稳的小扰动在惯性力作用下产生的表面涡量只能向下游演化发展,而几何扰动则根据扰动位置,产生的表面涡量可以向扰动上游或下游演化发展.从而可以推测所有钝体结构尾迹中的各种型式的涡脱落模态,从涡量符号律的演化角度来看,实际上是一致的,都是起源于壁面产生特定符号组合规律的∏型涡.  相似文献   

16.
基于连续小波变换的神经网络人脸识别研究   总被引:3,自引:1,他引:2  
赵静  夏良正 《光子学报》2005,34(9):1425-1430
研究了基于连续小波变换的神经网络进行人脸识别的方法.介绍了小波分析的理论基础,详细讨论了根据小波变换系数的范数选取小波母函数的方法,根据小波脊线确定网络神经元个数的方法以及神经网络的初始化和参数训练方法.通过对人脸图像灰度的连续小波分析,神经网络的自组织自学习能力,调整连接权值和小波神经元的尺度、位移参数,完成人脸识别的任务.实验结果验证了该神经网络的识别性能明显优于用特征脸方法对相同人脸库进行的识别.  相似文献   

17.
A novel vorticity–velocity formulation of the Navier–Stokes equations – the Mass-Conserving, Smooth (MC-Smooth) vorticity–velocity formulation – is developed in this work. The governing equations of the MC-Smooth formulation include a new second-order Poisson-like elliptic velocity equation, along with the vorticity transport equation, the energy conservation equation, and Nspec species mass balance equations. In this study, the MC-Smooth formulation is compared to two pre-existing vorticity–velocity formulations by applying each formulation to confined and unconfined axisymmetric laminar diffusion flame problems. For both applications, very good to excellent agreement for the simulation results of the three formulations has been obtained. The MC-Smooth formulation requires the least CPU time and can overcome the limitations of the other two pre-existing vorticity–velocity formulations by ensuring mass conservation and solution smoothness over a broader range of flow conditions. In addition to these benefits, other important features of the MC-Smooth formulation include: (1) it does not require the use of a staggered grid, and (2) it does not require excessive grid refinement to ensure mass conservation. The MC-Smooth formulation is a computationally attractive approach that can effectively extend the applicability of the vorticity–velocity formulation.  相似文献   

18.
Swirling turbulent flows display intermittent pressure drops associated with intense vorticity filaments. Using the wavelet transform modulus maxima representation of pressure fluctuations, we propose a method of characterizing these pressure drop events from their time-scale properties. This method allows us to discriminate fluctuations induced by just formed (young) as well as by burst (old) filaments from background pressure fluctuations. The statistical characteristics of these filaments (core size, waiting time) are analyzed in details and compared with previously reported experimental and numerical findings. Their intermittent occurrence is found to be governed by a pure Poisson's law, the hallmark of independent events. Then we apply the wavelet transform modulus maxima (WTMM) method to the background pressure fluctuations. This study reveals that, once removed all the filaments, the “multifractal” nature of pressure fluctuations still persists. This is a clear indication that the statistical contribution of the filaments is not important enough to account for the intermittency phenomenon in turbulents flows. Received 27 July 1998 and Received in final form 23 November 1998  相似文献   

19.
In this study, we use volume-penalization to mimic the presence of obstacles in a flow or a domain with no-slip boundaries. This allows in principle the use of fast Fourier spectral methods and coherent vortex simulation techniques (based on wavelet decomposition of the flow variables) to compute turbulent wall-bounded flow or flows around solid obstacles by simply adding one term in the equation. Convergence checks are reported using a recently revived, and unexpectedly difficult dipole–wall collision as a benchmark computation. Several quantities, like the vorticity isolines, truncation error, kinetic energy and enstrophy are inspected for a collision of a dipole with a no-slip wall and compared with available benchmark data obtained with a standard Chebyshev pseudospectral method. We quantify the possible deteriorating effects of the Gibbs phenomenon present in the Fourier based schemes due to continuity restrictions of the penalized Navier–Stokes equations on the wall. It is found that Gibbs oscillations have a negligible effect on the flow evolution allowing higher-order recovery of the accuracy on a Fourier basis by means of postprocessing. An advantage of coherent vortex simulations, on the other hand, is that the degrees of freedom of the flow computation can strongly be reduced. In this study, we quantify the possible reduction of degrees of freedom while keeping the accuracy. For an optimal convergence scenario the penalization parameter has to scale with the number of Fourier and wavelet modes. In addition, an implicit treatment of the Darcy drag term in the penalized Navier–Stokes equations is beneficial since this allows one to set the time step independent from the penalization parameter without additional computational or memory requirements.  相似文献   

20.
The acoustic impedance at low frequencies of a circular cylindrical cavity in the wall of a duct in the presence of a low Mach number mean flow is examined. A linearized theoretical model is proposed which involves the unsteady shedding of vorticity from the upstream edge of the cavity aperture. The shed vorticity causes a “potential difference” to be established across the aperture which modifies the reciprocating volume flux and results in the dissipation of acoustic energy. Comparison of theoretical predictions with preliminary experimental data obtained by Parrott (1978, private communication) at the NASA Langley Research Center provides tentative support for the present analysis. Certain difficulties associated with the linearized treatment of cavity oscillations are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号