首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用溶胶凝胶法合成了La1.5Sr0.5NiO4+δ掺杂Co的阴极材料La1.5Sr0.5Ni1-xCoxO4+δ (x=0、0.2、0.4、0.6)。通过X射线衍射、X射线光电子能谱、热重、热膨胀系数的测定和扫描电镜等技术探究了材料的相结构、元素组成、热力学性能和表面形貌。结果表明,所合成的样品为具有类钙钛矿型结构的单一纯相,掺杂Co元素使材料的热膨胀系数有所提高。将该材料应用于固体氧化物燃料电池(SOFC)阴极,进行了电导率及电化学阻抗谱的测定。结果发现,La1.5Sr0.5Ni1-xCoxO4+δ的电导率随着Co元素掺杂量的提高而升高,当x=0.4时La1.5Sr0.5Ni0.6Co0.4O4+δ  相似文献   

2.
杜柯  周伟瑛  胡国荣  彭忠东  蒋庆来 《化学学报》2010,68(14):1391-1398
以LiOH•H2O, Ni2O3, Co3O4和MnO2为原料, 经过机械活化后在空气气氛下经高温烧结, 合成了锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征. 结果表明, 900 ℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料, 并具有良好的电化学性能, 在室温下以60 mA/g的电流充放电, 首次放电比容量可达到248.2 mAh/g, 循环50次后放电比容量为239.4 mAh/g, 容量保持率为96.45%. 测试了该材料的高低温循环性能.  相似文献   

3.
采用溶剂热法成功制备了富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2(LLO),通过铈离子掺杂和Nb2O5包覆,获得新型改性富锂锰基正极材料CNLLO。与LLO相比,比镍、钴、锰离子半径更大的铈离子的掺入增加了CNLLO的层间距,提高了锂离子扩散速率;Nb2O5包覆层抑制了CNLLO表面的副反应,限制了晶体结构的转变,提高了CNLLO的稳定性。在10 C倍率下,CNLLO的放电比容量(128.0 mAh·g-1)高于LLO(85.6 mAh·g-1)。此外,CNLLO还表现出优异的循环性能,1 C下循环200次后容量保持率和平均放电电压衰减值分别为80.2%和415.3 mV。因此,所制备的CNLLO正极材料具有优异的电化学性能,在锂离子电池中具有广阔的应用前景。  相似文献   

4.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

5.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

6.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

7.
刘永梅  郭永榔 《应用化学》2009,26(10):1236-1240
以Li2CO3和NH4VO3为原料,在不同条件下合成了锂离子电池正极材料用Li1+xV3O8。研究了反应物的分散条件和煅烧温度对产物晶型结构、形貌及电化学性能的影响。 XRD、IR和SEM结果表明,用超声波在无水乙醇中分散反应物得到的前驱体于550 ℃下煅烧,所得产物Li1+xV3O8结晶度低、粒径小、形貌均匀。 充放电、循环伏安等结果表明,该材料在充放电过程中极化低、嵌脱锂位置多、循环稳定性好。 在0.5 C放电条件下,第2次循环放电容量达到268 mA·h/g,100次循环后容量仍保持210 mA·h/g以上。  相似文献   

8.
唐爱东  黄可龙 《化学学报》2005,63(13):1210-1214
采用溶胶-凝胶法, 通过锂盐、镍盐、钴盐与锰盐生成锂镍钴锰氧化合物的前驱体, 随后采用高温固相法合成了Li(Mn1/3Co1/3Ni1/3)O2. 借助于X射线光电子能谱(XPS)、X射线衍射(XRD)、循环伏安(CV)及充放电测试等现代测试手段研究了材料的晶型结构、离子价态及电化学性能. 前驱体经950 ℃煅烧可获得晶体结构完整、晶胞参数为a=0.2864 nm, c=1.4235 nm的六方层状Li(Mn1/3Co1/3Ni1/3)O2化合物; XPS结果表明Li(Mn1/3Co1/3Ni1/3)O2化合物表面上的Mn, Ni和Co分别以Mn4+, Ni2+和Co3+存在; 材料的高温放电比容量比室温要高, 在55 ℃下, 在2.5~4.6 V电压范围内, 电流密度为28 mA/g时材料首次放电容量195 mAh/g, 循环10次后容量保持在170 mAh/g; 循环伏安曲线上3.7 V和4.4 V的氧化还原过程对应于Ni2+/4+和Co3+/4+氧化还原电对的反应.  相似文献   

9.
通过改性Pechini方法合成不同Co含量的富锂正极材料Li[Li(1/3-x/3)CoxMn(2/3-x/3)]O2 (x=0.4, 0.5, 0.6). XRD研究结果表明, 不同Co含量的富锂正极材料均具有良好的层状结构, 结晶度高. 电化学测试结果表明材料的初始容量随Co含量的增加而增加, 在200~220 mAh/g之间. 其中x=0.4材料的循环性能最佳, 在0.5 C (100 mA/g)时, 循环50次后的容量保持率为75%. 容量微分曲线研究结果表明在3.5 V以下出现了Mn4+/Mn3+的还原峰, 并随循环次数的增加峰面积加大. 循环过程的XRD研究表明, 随着充放电次数的增加, 富锂正极材料的层状结构逐渐向尖晶石相转变, 且有杂质相MOx (M=Co, Mn)生成, 导致容量衰减.  相似文献   

10.
锂离子电池正极材料的晶体结构及电化学性能   总被引:6,自引:0,他引:6  
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。  相似文献   

11.
李林  王昊  郭志豪  彭工厂 《合成化学》2022,30(9):704-708
本研究以硫酸锰、硫酸钴、硫酸镍、碳酸钠和氟化铵为原料,通过共沉淀法结合高温煅烧法合成氟掺杂富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O1.92F0.08。通过扫描电子显微镜(SEM)对样品形貌进行观察,利用X-射线衍射(XRD)技术表征晶体结构,利用X-射线能谱仪(EDS)对样品元素分布进行测试,对材料进行恒电流充放电并研究其电化学性能。结果表明:氟掺杂后的富锂锰基正极材料微观形貌没有发生明显变化并保持层状结构;氟原位掺杂的样品在电流密度为1 C时循环65圈后,放电比容量为179 mAh/g,容量保持率为91.89%,高于未掺杂的样品87.5%,有效改善了材料的循环性能。  相似文献   

12.
富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2因具有超过250 mA·h·g-1的可逆比容量和高工作电压(>3.5 V. Li/Li+)以及经济成本低的特点,在便携式电子设备中发挥着重要的作用,也被认为是下一代混合动力汽车(HEV)和电动汽车(EV)的理想动力源,是一种有前途的正极材料。由于富锂锰基正极材料存在低倍率容量、电压衰减严重、初始容量损失大的问题,因此提高电池的容量和寿命是目前研究的重点。为此综述了锂离子电池富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的储锂机理、制备方法以及改性研究。  相似文献   

13.
高镍三元正极材料LiNixMnyCo1-x-yO2 (x > 0.8)因其高能量密度而备受瞩目。在高镍三元正极材料中,Co不但有助于增强层状正极材料结构稳定性,而且能够提高正极材料导电性能,因此被认为是一种非常重要的元素。但是由于目前全球范围内钴矿资源紧缺,在一定程度上限制了含钴正极材料在新能源电动汽车领域的发展应用。基于此,本文将不同的过渡金属离子掺杂到高镍层状材料中形成无钴化正极材料,并进行高镍正极材料无钴化的可行性分析。通过实验对比发现,资源存储量丰富并且价格低廉的Zr在一定程度上可以取代Co元素,得到的正极材料LiNi0.85Mn0.1Zr0.05O2表现出良好的电化学性能,在0.2C倍率以及2.75–4.3 V的截止电压范围内,其放电比容量为179.9 mAh·g-1,80周容量保持率为96.52%。  相似文献   

14.
随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.  相似文献   

15.
制备了一种核壳带状C/VN复合材料,通过SEM和TEM研究了复合材料的形貌结构。以ZIF-8/V2O5·nH2O、C/V2O5和C/VN三种材料作为含硫正极,锂片为负极,1.0 M LiTFSI,2%LiNO3/DME∶DOL(体积比1∶1)为电解液,组装锂硫电池进行电化学测试。结果表明:C/VN能够显著提高正极材料的电化学性能,促进充放电过程中的电子转移;S@C/VN在0.5 C的电流密度下初始比容量为900.4 mAh/g,经过500圈后,仍能提供413.9 mAh/g的比容量,展现了S@C/VN优异的循环性能。  相似文献   

16.
采用溶液燃烧法制备了化学组成均一的尖晶石型(Cr0.2Fe0.2Mn0.2Ni0.2M0.2)3O4(M=Co, Zn, Mg)高熵氧化物(HEOs)纳米晶粉体,并将3种高熵氧化物用作锂离子电池负极材料,研究了活性过渡金属Co和Zn阳离子与非活性Mg阳离子对电化学性能的影响.结果表明,由于具有高构型熵稳定的晶体结构, 3种高熵氧化物均表现出优异的循环稳定性,其中含有非活性Mg离子的高熵氧化物(Cr0.2Fe0.2Mn0.2Ni0.2Mg0.2)3O4不仅具有更高的初始比容量(1300 mA·h/g)和倍率性能(在3 A/g电流密度下比容量约为450 mA·h/g),且在循环500次后Li+的扩散系数为其它2种高熵氧化物的3倍以上.(Cr0.2Fe0.2...  相似文献   

17.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   

18.
介绍了一种先冷冻干燥后固相烧结制备正极材料Li2FeP2O7的方法. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)对材料的组成和形态进行表征, 并通过循环伏安曲线(CV)和电化学阻抗谱(EIS)研究了Li2FeP2O7材料的电化学性能. 研究发现, 合成Li2FeP2O7的最佳温度为590 ℃, 此温度下反应较完全且产物杂质较少, 1.6C倍率下的放电比容量达到55 mA·h·g?1, 明显高于其它温度下合成样品的放电比容量. 该温度下合成的Li2FeP2O7还具有低阻抗和较大的交换电流密度, 说明这种合成方式有利于提高锂离子在Li2FeP2O7中的扩散.  相似文献   

19.
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。  相似文献   

20.
Al掺杂对Li(AlyCo1-y)O2材料结构的影响   总被引:9,自引:0,他引:9  
报道了在800℃烧结制备的新型锂二次电池正极材料Li(AlyCo1-y)O2(y=0,0.11)的X射线衍射结果和由此而揭示的结构演化过程.研究表明,y≤0.5时,材料呈单相,0.6≤y≤0.9时,材料呈两相[Li(AlyCo1-y)O2,C-LiAlO2]共存状态,y=1时,材料又呈单相,为LiAlO2相.Li(AlyCo1-y)O2材料中y值的上限即Al的最大固溶度在0.5左右.在单相区(y≤0.5),随着Al掺杂的增多,Li(AlyCo1-y)O2材料晶格结构参数发生变化,a轴缩短,c轴变长,c/a比基本呈线性增加,材料的层状属性更加明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号