首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A digraph D is strong if it contains a directed path from x to y for every choice of vertices x,y in D. We consider the problem (MSSS) of finding the minimum number of arcs in a spanning strong subdigraph of a strong digraph. It is easy to see that every strong digraph D on n vertices contains a spanning strong subdigraph on at most 2n−2 arcs. By reformulating the MSSS problem into the equivalent problem of finding the largest positive integer kn−2 so that D contains a spanning strong subdigraph with at most 2n−2−k arcs, we obtain a problem which we prove is fixed parameter tractable. Namely, we prove that there exists an O(f(k)nc) algorithm for deciding whether a given strong digraph D on n vertices contains a spanning strong subdigraph with at most 2n−2−k arcs.We furthermore prove that if k≥1 and D has no cut vertex then it has a kernel of order at most (2k−1)2. We finally discuss related problems and conjectures.  相似文献   

2.
A digraph is quasi-transitive if there is a complete adjacency between the inset and the outset of each vertex. Quasi-transitive digraphs are interseting because of their relation to comparability graphs. Specifically, a graph can be oriented as a quasi-transitive digraph if and only if it is a comparability graph. Quasi-transitive digraphs are also of interest as they share many nice properties of tournaments. Indeed, we show that every strongly connected quasi-transitive digraphs D on at least four vertices has two vertices v1 and v2 such that Dvi is strongly connected for i = 1, 2. A result of tournaments on the existence of a pair of arc-disjoint in- and out-branchings rooted at the same vertex can also be extended to quasi-transitive digraphs. However, some properties of tournaments, like hamiltonicity, cannot be extended directly to quasi-transitive digraphs. Therefore we characterize those quasi-transitive digraphs which have a hamiltonian cycle, respectively a hamiltonian path. We show the existence of highly connected quasi-transitive digraphs D with a factor (a collection of disjoint cycles covering the vertex set of D), which have a cycle of every length 3 ≦ k ≦ |V(D)| ? 1 through every vertex and yet they are not hamiltonian. Finally we characterize pancyclic and vertex pancyclic quasi-transitive digraphs. © 1995, John Wiley & Sons, Inc.  相似文献   

3.
A digraph is arc-locally in-semicomplete if for any pair of adjacent vertices x,y, every in-neighbor of x and every in-neighbor of y either are adjacent or are the same vertex. A digraph is quasi-arc-transitive if for any arc xy, every in-neighbor of x and every out-neighbor of y either are adjacent or are the same vertex. Laborde, Payan and Xuong proposed the following conjecture: Every digraph has an independent set intersecting every non-augmentable path (in particular, every longest path). In this paper, we shall prove that this conjecture is true for arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs.  相似文献   

4.
We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,vN, there is no monochromatic directed path between them, and (ii) for every vertex x∈(V(D)?N), there is a vertex yN such that there is an xy-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural numberlsuch that if a digraphDisk-colored so that every directed cycle of length at mostlis monochromatic, thenDhas a kernel by monochromatic paths?  相似文献   

5.
Let G = (V, E) be an interval graph with n vertices and m edges. A positive integer R(x) is associated with every vertex x ? V{x\in V}. In the conditional covering problem, a vertex x ? V{x \in V} covers a vertex y ? V{y \in V} (xy) if d(x, y) ≤ R(x) where d(x, y) is the shortest distance between the vertices x and y. The conditional covering problem (CCP) finds a minimum cardinality vertex set C í V{C\subseteq V} so as to cover all the vertices of the graph and every vertex in C is also covered by another vertex of C. This problem is NP-complete for general graphs. In this paper, we propose an efficient algorithm to solve the CCP with nonuniform coverage radius in O(n 2) time, when G is an interval graph containing n vertices.  相似文献   

6.
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every K ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges. Research supported by NSF grant DMS-0300529. Research supported by KBN grant 2P03A 015 23 and N201036 32/2546. Part of research performed at Emory University, Atlanta. Research supported by NSF grant DMS-0100784.  相似文献   

7.
If x is a vertex of a digraph D, then we denote by d +(x) and d (x) the outdegree and the indegree of x, respectively. A digraph D is called regular, if there is a number p ∈ ℕ such that d +(x) = d (x) = p for all vertices x of D. A c-partite tournament is an orientation of a complete c-partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular, whether c-partite tournaments with r vertices in each partite set contain a cycle with exactly r − 1 vertices of every partite set. In 1982, Beineke and Little [2] solved this problem for the regular case if c = 2. If c ⩾ 3, then we will show that a regular c-partite tournament with r ⩾ 2 vertices in each partite set contains a cycle with exactly r − 1 vertices from each partite set, with the exception of the case that c = 4 and r = 2.  相似文献   

8.
Let D be an oriented graph of order n ≥ 9, minimum degree at least n − 2, such that, for the choice of distinct vertices x and y, either xyE(D) or d+(x) + d(y) ≥ n − 3. Song (J. Graph Theory 18 (1994), 461–468) proved that D is pancyclic. In this note, we give a short proof, based on Song's result, that D is, in fact, vertex pancyclic. This also generalizes a result of Jackson (J. Graph Theory 5 (1981), 147–157) for the existence of a hamiltonian cycle in oriented graphs. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 313–318, 1999  相似文献   

9.
Toru Araki   《Discrete Mathematics》2009,309(21):6229-6234
For a digraph G, a k-tuple twin dominating set D of G for some fixed k≥1 is a set of vertices such that every vertex is adjacent to at least k vertices in D, and also every vertex is adjacent from at least k vertices in D. If the subgraph of G induced by D is strongly connected, then D is called a connected k-tuple twin dominating set of G. In this paper, we give constructions of minimal connected k-tuple twin dominating sets for de Bruijn digraphs and Kautz digraphs.  相似文献   

10.
Let |D| and |D|+n denote the number of vertices of D and the number of vertices of outdegree n in the digraph D, respectively. It is proved that every minimally n‐connected, finite digraph D has |D|+nn + 1 and that for n ≥ 2, there is a cn > 0 such that for all minimally n‐connected, finite digraphs D. Furthermore, case n = 2 of the following conjecture is settled which says that every minimally n‐connected, finite digraph has a vertex of indegree and outdegree equal to n. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 129–144, 2002  相似文献   

11.
A digraph is called k-cyclic if it cannot be made acyclic by removing less than k arcs. It is proved that for every ε > 0 there are constants K and δ so that for every d ∈ (0, δn), every ε n2-cyclic digraph with n vertices contains a directed cycle whose length is between d and d + K. A more general result of the same form is obtained for blow-ups of directed cycles.  相似文献   

12.
Let G=(V,E) be a simple graph. A subset DV is a dominating set of G, if for any vertex xVD, there exists a vertex yD such that xyE. By using the so-called vertex disjoint paths cover introduced by Reed, in this paper we prove that every graph G on n vertices with minimum degree at least five has a dominating set of order at most 5n/14.  相似文献   

13.
 An orientation of a digraph D is a spanning subdigraph of D obtained from D by deleting exactly one arc between x and y for every pair xy of vertices such that both x y and y x are in D. Almost minimum diameter orientations of certain semicomplete multipartite and extended digraphs are considered, several generalizations of results on orientations of undirected graphs are obtained, some conjectures are posed. Received: August 31, 2000 Final version received: October 30, 2001 Acknowledgments. Part of this work was done when the first author was visiting the Department of Mathematics, National University of Singapore. The departmental hospitality and financial support are very much appreciated.  相似文献   

14.
We prove an essentially tight lower bound on the unbounded-error communication complexity of every symmetric function, i.e., f(x,y)=D(|xy|), where D: {0,1,…,n}→{0,1} is a given predicate and x,y range over {0,1} n . Specifically, we show that the communication complexity of f is between Θ(k/log5 n) and Θ(k logn), where k is the number of value changes of D in {0,1,…, n}. Prior to this work, the problem was solved only for the parity predicate D (Forster 2001).  相似文献   

15.
 A set AV of the vertices of a graph G=(V,E) is an asteroidal set if for each vertex aA, the set A\{a} is contained in one component of GN[a]. The maximum cardinality of an asteroidal set of G, denoted by an (G), is said to be the asteroidal number of G. We investigate structural properties of graphs of bounded asteroidal number. For every k≥1, an (G)≤k if and only if an (H)≤k for every minimal triangulation H of G. A dominating target is a set D of vertices such that DS is a dominating set of G for every set S such that G[DS] is connected. We show that every graph G has a dominating target with at most an (G) vertices. Finally, a connected graph G has a spanning tree T such that d T (x,y)−d G (x,y)≤3·|D|−1 for every pair x,y of vertices and every dominating target D of G. Received: July 3, 1998 Final version received: August 10, 1999  相似文献   

16.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

17.
Let G be a k-connected graph of order n. For an independent set c, let d(S) be the number of vertices adjacent to at least one vertex of S and > let i(S) be the number of vertices adjacent to at least |S| vertices of S. We prove that if there exists some s, 1 ≤ s ≤ k, such that ΣxiEX d(X\{Xi}) > s(n?1) – k[s/2] – i(X)[(s?1)/2] holds for every independetn set X ={x0, x1 ?xs} of s + 1 vertices, then G is hamiltonian. Several known results, including Fraisse's sufficient condition for hamiltonian graphs, are dervied as corollaries.  相似文献   

18.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

19.
The scrambling index k(D)k(D) of a primitive digraph D is the smallest positive integer k such that for every pair of vertices x and y, there exists a vertex v such that there exist directed walks of length k from x to v and from y to v. In this paper, we study the scrambling index set of primitive digraphs.  相似文献   

20.
 Let G be a (V,E) graph of order p≥2. The double vertex graph U 2 (G) is the graph whose vertex set consists of all 2-subsets of V such that two distinct vertices {x,y} and {u,v} are adjacent if and only if |{x,y}∩{u,v}|=1 and if x=u, then y and v are adjacent in G. For this class of graphs we discuss the regularity, eulerian, hamiltonian, and bipartite properties of these graphs. A generalization of this concept is n-tuple vertex graphs, defined in a manner similar to double vertex graphs. We also review several recent results for n-tuple vertex graphs. Received: October, 2001 Final version received: September 20, 2002 Dedicated to Frank Harary on the occasion of his Eightieth Birthday and the Manila International Conference held in his honor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号