首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new stochastic averaging procedure for single-degree-of-freedom strongly non-linear oscillators with lightly linear and (or) non-linear dampings subject to weakly external and (or) parametric excitations of wide-band random processes is developed by using the so-called generalized harmonic functions. The procedure is applied to predict the response of Duffing–van der Pol oscillator under both external and parametric excitations of wide-band stationary random processes. The analytical stationary probability density is verified by digital simulation and the factors affecting the accuracy of the procedure are analyzed. The proposed procedure is also applied to study the asymptotic stability in probability and stochastic Hopf bifurcation of Duffing–van der Pol oscillator under parametric excitations of wide-band stationary random processes in both stiffness and damping terms. The stability conditions and bifurcation parameter are simply determined by examining the asymptotic behaviors of averaged square-root of total energy and averaged total energy, respectively, at its boundaries. It is shown that the stability analysis using linearized equation is correct only if the linear stiffness term does not vanish.  相似文献   

2.
An analytical method is developed for examining the first-passage problem formulated in context with the response of a class of lightly damped non-linear oscillators to broad-band random excitations. A circular (E-type) barrier is considered. The amplitude of the oscillator response is modeled as a Markovian process. This modeling leads to a backward Kolmogorov equation which governs the evolution of the survival probability of the oscillator. The Kolmogorov equation is solved approximately by using the Galerkin technique and a perturbation technique. A set of confluent hypergeometric functions are used as an orthogonal basis for the expansions which are involved in the application of the Galerkin technique and the perturbation technique. The proposed method is exemplified by considering the response of the classical Van der Pol oscillator to white noise excitation. The reliability of the derived analytical solution is assessed by comparison with digital data obtained by a Monte Carlo simulation.  相似文献   

3.
Pernot  S.  Lamarque  C.-H. 《Nonlinear dynamics》2003,32(1):33-70
The scope of this paper is to introduce a new wavelet-balanceprocedure allowing to give a genuine time-scale representation ofvibrations of nonlinear dynamical systems by adopting a waveletmultiresolution approach. In a former paper, a wavelet-Galerkinoriented procedure was developed to analyze vibrations of lineartime-periodic systems. The topic is here to extend the process tothe nonlinear case using a perturbation technique. The underlyingidea consists in successively balancing the linearized equationsof motion into wavelet spaces with increasing resolution scales.Here we demonstrate the wavelet-balance procedure may accuratelyexhibit both transient and stationary vibrations of any nonlinearproblem in general, whatever smooth nonlinearity shape or externalforcing may be. In addition, wavelets inherit of fairly goodtime-frequency localization properties that are likely to permitthe investigation of strong nonlinear problems. Numericalexperiments achieved on a well known Duffing oscillator involvinga cubic nonlinearity then illustrate the procedure. Simulationsattest the relevance of the method by comparison with eitherpurely numerical results obtained with a Runge–Kutta integrationscheme or with an analytical study based on the multiple scalesmethod. We demonstrate that this semi-analytical semi-numericalperturbation method permits to capture stable limit cycles of theDuffing oscillator and its related amplitude spectrum response orstill responses to pulse-like excitations. Finally, key propertiesof the method are discussed and future prospective works areoutlined.  相似文献   

4.
Building on the basic idea behind the Restoring Force Method for the non-parametric identification of non-linear systems, a general procedure is presented for the direct identification of the state equation of complex non-linear systems. No information about the system mass is required, and only the applied excitation(s) and resulting acceleration are needed to implement the procedure. Arbitrary non-linear phenomena spanning the range from polynomial non-linearities to the noisy Duffing-van der Pol oscillator (involving product-type non-linearities and multiple excitations) or hysteretic behavior such as the Bouc-Wen model can be handled without difficulty. In the case of polynomial-type non-linearities, the approach yields virtually exact results for sufficiently rich excitations. For other types of non-linearities, the approach yields the optimum (in least-squares sense) representation in non-parametric form of the dominant interaction forces induced by the motion of the system. Several examples involving synthetic data corresponding to a variety of highly non-linear phenomena are presented to demonstrate the utility as well as the range of validity of the proposed approach.  相似文献   

5.
For a system subjected to a random excitation, the probability distribution of the excitation may affect behaviors of the system responses. Such effects are investigated for a variety of dynamical systems, including a linear oscillator, an oscillator of cubic non-linearity in both damping and stiffness, and a non-linear oscillator of the van der Pol type. The random excitations are assumed to be stationary stochastic processes, sharing the same spectral density, but with different probability distributions. Each excitation process is generated by passing a Brownian motion process through a non-linear filter, which is governed by an Ito stochastic differential equation. Monte Carlo simulations are carried out to obtain the transient and stationary properties of the system response in each case. It is shown that, under different excitations, the transient behaviors of the system response can be markedly different. The differences tend to reduce, however, as time of exposure to the excitations increases and the system reaches the stationary state.  相似文献   

6.
The problem of non-linear systems excited by random forces with known power spectral density functions and unspecified probability structure is considered. Sufficient, but not necessary, conditions on the input under which the response can be a Gaussian process are investigated. The approach is illustrated by investigating the hardening spring cubic oscillator under wide and narrow band excitations. The non-Gaussian probability density of the input that leads to Gaussian response is determined.  相似文献   

7.
In carrying out the statistical linearization procedure to a non-linear system subjected to an external random excitation, a Gaussian probability distribution is assumed for the system response. If the random excitation is non-Gaussian, however, the procedure may lead to a large error since the response of bother the original non-linear system and the replacement linear system are not Gaussian distributed. It is found that in some cases such a system can be transformed to one under parametric excitations of Gaussian white noises. Then the quasi-linearization procedure, proposed originally for non-linear systems under both external and parametric excitations of Gaussian white noises, can be applied to these cases. In the procedure, exact statistical moments of the replacing quasi-linear system are used to calculate the linearization parameters. Since the assumption of a Gaussian probability distribution is avoided, the accuracy of the approximation method is improved. The approach is applied to non-linear systems under two types of non-Gaussian excitations: randomized sinusoidal process and polynomials of a filtered process. Numerical examples are investigated, and the calculated results show that the proposed method has higher accuracy than the conventional linearization, as compared with the results obtained from Monte Carlo simulations.  相似文献   

8.
Simulation is used to obtain information about non-Gaussian aspects of the absolute response acceleration of a bi-linear hysteretic oscillator with an excitation which is Gaussian white noise. Attention is focused on the frequency content of the fourth cumulant of the response. This frequency content is studied by consideration of the trispectrum and also by the simplified technique of looking at the coefficient of excess for the response of a narrowband linear system mounted on the non-linear oscillator. Attempts are also made to model the non-Gaussian response of the non-linear oscillator by a filtered delta correlated (FDC) process, but it is shown that no process of this type can exhibit some of the significant characteristics of the non-linear response. In particular, the trispectrum of the non-linear response appears to be more narrowband than the power spectral density, and also it sometimes does not have the same sign at every point in the three-dimensional frequency space, and this behavior is distinctly different from that of any FDC process. Modifications of the FDC model are suggested in order to obtain improved approximations of the non-linear response.  相似文献   

9.
An approach combining the method of moment equations and the statistical linearization technique is proposed for analysis of the response of non-linear mechanical systems to random excitation. The adaptive statistical linearization procedure is developed for obtaining a more accurate mean square of responses. For these, a Duffing oscillator and an oscillator with cubic non-linear damping subject to white noise excitation are considered. It is shown that the adaptive statistical linearization proposed yields good accurate results for both weak and strong non-linear stochastic systems.Presented at the First European Solid Mechanics Conference, September 9–13, 1991. Munich, Germany  相似文献   

10.
A semi-analytical procedure for obtaining stability conditions for strongly non-linear single degree of freedom system (SDOF) subjected to random excitations is presented using stochastic averaging technique. The method is useful for finding stability conditions for systems having highly irregular non-linear functions which cannot be integrated in closed form to yield analytical expressions for averaged drift and diffusion coefficients. In spite of numerical methods available for finding stability of SDOF system by determining Lyapunov exponent, the proposed technique may have to be adopted (i) when the excitation is non-white; and (ii) when numerical integration fails due to convergence problem. The method is developed in such a way that it lends itself to a numerical computational scheme using FFT for obtaining numerical values of drift and diffusion coefficients of Its differential equation and the corresponding FPK equation for the system. These values of averaged drift and diffusion coefficients are then fit into polynomial form using curve fitting technique so that polynomials can be used for stability analysis. Two example problems are solved as illustrations. The first one is the Van der Pol oscillator having non-linearities which can be treated purely analytically. The example is considered for the validation of the proposed method. The second one involves non-linearities in the form of signum function for which purely analytical solution is not possible. The results of the study show that the proposed method is useful and efficient for performing stability analysis of dynamic systems having any type of non-linearities.  相似文献   

11.
The stationary probability density function (PDF) solution of the responses of non-linear stochastic oscillators subjected to Poisson pulses is analyzed. The PDF solutions are obtained by the exponential-polynomial closure (EPC) method. To assess the effectiveness of the solution procedure numerically, non-linear oscillators are analyzed with different impulse arrival rates, degree of oscillator non-linearity and excitation intensity. Numerical results show that the PDFs obtained with the EPC method yield good agreement with those obtained from Monte Carlo simulation when the polynomial order is 4 or 6. It is also observed that the EPC procedure is the same as the equivalent linearization procedure under Gaussian white noise in the case of the polynomial order being 2.  相似文献   

12.
The method of equivalent linearization is generalized such that the response of a non-linear oscillator subject to both parametric and external random white-noise excitations can be determined approximately. The main objective of the new method is to obtain a closed system of differential equations for certain statistical moments of the response. This can be achieved by linearizing the drift term of the corresponding Itô-equations and by replacing the square of the diffusion term by a second degree polynomial. It is found that the accuracy of the mean square amplitudes is improved considerably compared with the original equivalent linearization.  相似文献   

13.
Dynamical systems subjected to random excitations exhibit non-linear behavior for sufficiently large motion. The multiple time scale method has been extensively utilized in the framework of non-linear deterministic analysis to obtain two averaged first-order differential equations describing the slow time scale modulation of amplitude and phase response. In this paper the multiple time scale method, opportunely modified to take properly into account the correlation structure of the stochastic input process, is adopted to derive a stochastic frequency-response relationship involving the response amplitude statistics and the input power spectral density. A low-intensity noise is assumed to separate the strong mean motion from its weak fluctuations. The moment differential equations of phase and amplitude are derived and a linearization technique applied to evaluate the second order statistics. The theory is validated through digital simulations on a nonlinear single degree of freedom model for the transversal oscillation of a cantilever beam with tip force and to a Duffing-Rayleigh oscillator, to analyze non-linear damping effects.  相似文献   

14.
The problem of suboptimal linear feedback control laws with mean-square criteria for the linear oscillator and the Duffing oscillator under external non-Gaussian excitations is considered. The input process is modeled as a polynomial of a Gaussian process or as a renewal driven impulse process. To determine the suboptimal control, a modified iterative procedure is proposed, where four criteria of statistical linearization are combined with an optimal control strategy. The results indicate that the obtained minima do not depend on the linearization criterion. The nonlinearity tends to reduce this minimum.  相似文献   

15.
Chakraborty  G.  Mallik  A. K. 《Nonlinear dynamics》1998,17(4):301-324
The effects of parametric excitation on a traveling beam, both with and without an external harmonic excitation, have been studied including the non-linear terms. Non-linear, complex normal modes have been used for the response analysis. Detailed numerical results are presented to show the effects of non-linearity on the stability of the parametrically excited system. In the presence of both parametric and external harmonic excitations, the response characteristics are found to be similar to that of a Duffing oscillator. The results are sensitive to the relative strengths of and the phase difference between the two forms of excitations.  相似文献   

16.
The classical method of statistical linearization when applied to a non-linear oscillator excited by stationary wide-band random excitation, can be considered as a procedure in which the unknown parameters in a Gaussian distribution are evaluated by means of moment identities derived from the dynamic equation of the oscillator. A systematic extension of this procedure is the method of non-Gaussian closure in which an increasing number of moment identities are used to evaluate additional parameters in a family of non-Gaussian response distributions. The method is described and illustrated by means of examples. Attention is given to the choice of representations of non-Gaussian distributions and to techniques for generating independent moment identities directly from the differential equation of the non-linear oscillator. Some shortcomings of the method are pointed out.  相似文献   

17.
The method of equivalent external excitation is derived to predict the stationary variances of the states of non-linear oscillators subjected to both stochastic parametric and external excitations. The oscillator is interpreted as one which is excited solely by an external zero-mean stochastic process. The Fokker-Planck-Kolmogorov equation is then applied to solve for the density functions and match the stationary variances of the states. Four examples which include polynomial, non-polynomial, and Duffing type non-linear oscillators are used to illustrate this approach. The validity of the present approach is compared with some exact solutions and with Monte Carlo simulations.  相似文献   

18.
A procedure is developed for averaging the differential equations for certain non-linear oscillators which are damped and externally driven. The procedure makes possible the obtaining of marginal stability boundaries for bifurcations in parameter space and is useful for systems with unperturbed solutions involving Jacobi elliptic functions. Specific cases of a driven, damped pendulum, an anharmonie oscillator, a Duffing oscillator, and a non-linear Helmholtz oscillator are examined.  相似文献   

19.
Identification of non-linear systems is mainly limited to polynomial form non-linearities. Among the non-polynomial forms, bilinear oscillator constitutes an important class of non-linear systems and it has been used for modeling of various physical systems, particularly for structural elements with a breathing crack. An identification procedure is presented here for the class of bilinear oscillator, using higher order FRFs derived from Volterra series under harmonic excitation. The procedure addresses the problem of both; identification of the non-linearity structure as well as estimation of the bilinear parameter, which can be correlated to the crack severity and structural degradation. The procedure is illustrated with numerical simulation and the estimation results indicate that even a weakly bilinear state introduced by a small crack size can be accurately identified and measured.  相似文献   

20.
In this paper, we employ the technique of Jacobi Last Multiplier (JLM) to derive Lagrangians for several important and topical classes of non-linear second-order oscillators, including systems with variable and parametric dissipation, a generalized anharmonic oscillator, and a generalized Lane–Emden equation. For several of these systems, it is very difficult to obtain the Lagrangians directly, i.e., by solving the inverse problem of matching the Euler–Lagrange equations to the actual oscillator equation. In order to facilitate the derivation of exact solutions, and also investigate possible isochronous behavior in the analyzed systems, we next invoke some recent theoretical results and attempt to map the potential term to either the simple harmonic oscillator or the isotonic potential for specific values of the coefficient parameters of each non-linear oscillator. We find non-trivial parameter sets corresponding to isochronous dynamics in some of the considered systems, but none in others. Finally, the Lagrangians obtained here are coupled to Noether׳s theorem, leading to non-trivial conservation laws for several of the oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号