首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The critical and compensation temperatures of the bilayer Bethe lattices with one of the layers having only spin-1/2 atoms and the other having only spin-1 atoms placed symmetrically are studied by using exact recursion relations in a pairwise approach. The Hamiltonian of the model consist of the bilinear intralayer coupling constants of the two layers J 1 and J 2 for the interactions of the atoms in layers with spin-1/2 and spin-1, respectively, and the bilinear interlayer coupling constant J 3 between the adjacent atoms with spin-1/2 and spin-1 of the layers. After obtaining the ground state phase diagram with J 1 > 0, the variations of the order-parameters and the free energy are investigated to obtain the phase diagram of the model by considering only the ferromagnetic ordering of the layers, i.e. J 1 > 0 and J 2 > 0, and ferromagnetic or antiferromagnetic ordering of the adjacent spins of the layers, J 3 > 0 or J 3 < 0, respectively. It was found that the system presents both second- and first-order phase transitions and, tricritical points. The compensation temperatures was also observed for the appropriate values of the system parameters. PACS: 05.50.+q 05.70.Fh 64.60.Cn 75.10.Hk  相似文献   

2.

The mixed spin-1 and spin-3/2 Blume-Emery-Griffiths model with attractive biquadratic coupling is investigated in the framework of the Migdal-Kadanoff Renormalization Group method. By changing the ratio R > 0 of biquadratic and bilinear exchange interactions and according to the different values of crystal field interactions, we have determined six main types of phase diagrams. The full flow in the parameters space of the Hamiltonian was established and the fixed points obtained are drawn up in a table. In addition, we have determined the eigenvalues of the transformation of the group in the vicinity of the critical points. Finally, the introduction of a positive biquadratic interaction was discussed.

  相似文献   

3.
The dynamic phase transition has been studied, within a mean-field approach, in the kinetic spin-3/2 Ising model Hamiltonian with arbitrary bilinear and biquadratic pair interactions in the presence of a time dependent oscillating magnetic field by using the Glauber-type stochastic dynamics. The nature (first- or second-order) of the transition is characterized by investigating the behavior of the thermal variation of the dynamic order parameters and as well as by using the Liapunov exponents. The dynamic phase transitions (DPTs) are obtained and the phase diagrams are constructed in the temperature and magnetic field amplitude plane and found nine fundamental types of phase diagrams. Phase diagrams exhibit one, two or three dynamic tricritical points, and besides a disordered (D) and the ferromagnetic-3/2 (F3/2) phases, six coexistence phase regions, namely F 3/2+ F 1/2, F 3/2+ D, F 3/2+ F 1/2+ FQ, F 3/2+ FQ, F 3/2+ FQ + D and FQ + D, exist in which depending on the biquadratic interaction. PACS number(s): 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk  相似文献   

4.
Erhan Albayrak  Ali Yigit  Tunc Cengiz 《Physica A》2010,389(13):2522-2532
The temperature-dependent phase diagrams of the spin-3/2 Ising model on a two-layer Bethe lattice with ferromagnetic (FM)/antiferromagnetic (AFM) intra-layer and either FM or AFM type inter-layer interactions are investigated under a constant magnetic field (H) and in the presence of a crystal field (D) by using exact recursion equations in a pairwise approach for coordination numbers q=3,4 and 6, in detail. In the light of the ground-state (GS) phase diagrams, the temperature-dependent phase diagrams of the model are obtained by studying the thermal variations of the order parameters, response functions and free energy. Then, they are illustrated on the (kT/J1,J3/J1) and (kT/J1,J2/J1) planes for the given system parameters. It is observed that the system exhibits first- and second-order phase transitions for all q values, and hence, in some cases, tricritical points. The existence of critical-end points and that of isolated points are also observed. The re-entrant behavior owes its presence to the two Néel temperatures, TN, that are present for all q.  相似文献   

5.
The ABpC1−p type of mixed ferromagnetic-ferrimagnetic ternary-alloy with A (spin-3/2), B (spin-1) and C (spin-5/2) ions was studied on the Bethe lattice with the odd numbered shells containing only A ions, while the even numbered shells either containing B or C ions randomly. The phase diagrams were obtained on the (R=|JAC|/JAB,kTc/JAB) and (p, kTc/JAB) planes for given values of p and R, respectively, with the coordination numbers z=3, 4, 5 and 6. The explicit dependence of the phase diagrams on z and each shell of the Bethe lattice having only one type of ion lead to some differences when compared with the previous works. The model presents one or two compensation temperatures for appropriate values of the system parameters.  相似文献   

6.
We examine the dynamic phase transitions and the dynamic compensation temperatures, within a mean-field approach, in the mixed spin-3/2 and spin-5/2 Ising system with a crystal-field interaction under a time-varying magnetic field on a hexagonal lattice by using Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices with σ=3/2 and S=5/2. The Hamiltonian model includes intersublattice, intrasublattice, and crystal-field interactions. The intersublattice interaction is considered antiferromagnetic and to be a simple but interesting model of a ferrimagnetic system. We employ the Glauber transition rates to construct the mean-field dynamic equations, and we solve these equations in order to find the phases in the system. We also investigate the thermal behavior of the dynamic sublattice magnetizations and the dynamic total magnetization to obtain the dynamic phase transition points and compensation temperatures as well as to characterize the nature (continuous and discontinuous) of transitions. We also calculate the dynamic phase diagrams including the compensation temperatures in five different planes. According to the values of Hamiltonian parameters, five different fundamental phases, three different mixed phases, and six different types of compensation behaviors in the Néel classification nomenclature exist in the system.  相似文献   

7.
Bayram Deviren  Mehmet Erta? 《Physica A》2010,389(10):2036-2047
An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the (Δ/|J|, kBT/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.  相似文献   

8.
Bayram Deviren  Osman Canko 《Physica A》2009,388(9):1835-1848
The magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model with a crystal field in a longitudinal magnetic field on the honeycomb (z=3) and square lattice (z=4) are studied by using the effective-field theory with correlations. The ground state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice and total magnetizations, and present the phase diagrams in the (Δ/|J|, ) plane. The phase diagrams have one, two or even three compensation temperatures depending on the values of the crystal-field interaction. Moreover, the susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field.  相似文献   

9.
ABSTRACT

The simple cubic spin-1 Ising model exhibits the ferromagnetic (F)–ferromagnetic (F) phase transition in the low temperature region for the interval 1.40 < d = D/J < 1.48 at k = K/J = –0.5. The degree of the F-F phase transition determines the special point on the (kBT/J, d) phase diagram. In this paper, the critical behavior of the F-F phase transition was investigated for different heating rates using the cellular automaton heating algorithm. The universality class and the type of F-F phase transition were analyzed using the finite-size scaling theory and the power law relations. The results show that the F-F phase transition may be the second order, the first order or the weak first order depending on the heating rate in the interval 1.40 < d < 1.48 for k = –0.5.  相似文献   

10.
ErhanAlbayrak  AliYigit 《中国物理 B》2009,18(10):4193-4207
The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in the pairwise approach for given coordination numbers q=3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state (GS) phase diagrams are obtained on the different planes in detail and then the temperature-dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It is also found that the system exhibits double-critical end points and isolated points. The model also presents two Néel temperatures, TN, and the existence of which leads to the reentrant behaviour.  相似文献   

11.
AliYigit  ErhanAlbayrak 《中国物理 B》2012,21(2):20511-020511
The effects of assuming equal or unequal crystal fields (CF) on the phase diagrams of a mixed spin-1 and spin-5/2 system are investigated in terms of the recursion relations on the Bethe lattice (BL). The equal CF case was considered for the coordination numbers q=3, 4, and 6, while for q=3 the unequal CF case was also studied. It was found that for the equal CF case, the model exhibits second-order phase transitions and two compensation temperatures for all q, the reentrant behavior for q=4 and first-order phase transitions and tricritical point (TCP) for q=6. In the unequal CF case for q=3, the system yields first- and second-order phase transitions, TCP's, and three compensation temperatures. In addition, the TCP's in a very short range are classified as the stable and unstable ones depending on their free energies.  相似文献   

12.
The alternating-bond mixed spin-1/2 and spin-1 Ising chain with both longitudinal and transverse single-ion anisotropies are solved exactly by means of a mapping of the spin-1/2 transverse Ising chain and the Jordan-Wigner transformation. The ground state quantities are strongly dependent on the model Hamiltonian parameters J1, J2, Dx and Dz. We obtain the quasi-particles' spectra Λk, the dimerization gap Δd, the minimal energy Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole and the ground state energy Eg. The phase diagram of the ground state is also given. The results show that the alternating bond just quantitatively changes the ground state properties; no matter the nearest-neighbor exchange interactions J1 and J2 are equal or not, when Dz≥0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase.  相似文献   

13.
We study a Schrödinger equation involving a Hamiltonian that is a second-order differential operator, describes free spin-1/2 particles with both energy signs and a definite mass, and depends on a parameterG. One obtains the usual Dirac Hamiltonian by settingGi, but for real values ofG the one-particle theory developed here possesses an indefinite metric, so negative energy states have negative normalization. Although the new equation is not manifestly covariant, it is demonstrated that it can be made invariant under proper orthochronous Poincaré transformations; it is also invariant under the CPT transformation and charge conjugation, but not, as we interpret it, under space inversion.Supported in part by the U.S. Energy Research and Development Administration.  相似文献   

14.
In this study, we have analyzed the dynamical phase transitions of spin-1 Blume-Capel model with quenched random crystal field under the effect of a time dependent oscillating magnetic field. We have obtained the magnetic field, temperature (h,T) cross sections of the global phase diagram for constant values of the concentration and the amplitude of the single-ion anisotropy within mean field approximation. There are regions of the phase space where both ordered and disordered phases coexist. In addition, the dynamic phase transition from one regime to the other can be a first- or a second-order depending on the region in the phase diagram. Hence, the system exhibits a number of interesting phenomena and a rich variety of phase diagrams with type being according to the concentration p of active local crystal fields.  相似文献   

15.
A two-fold Cayley tree graph with fully q-coordinated sites is constructed and the spin-1 Ising Blume-Emery-Griffiths model on the constructed graph is solved exactly using the exact recursion equations for the coordination number q = 3. The exact phase diagrams in (kT/J, K/J ) and (kT/J, D/J) planes are obtained for various values of constants D/J and K/J, respectively, and the tricritical behavior is found. It is observed that when the negative biquadratic exchange (K) and the positive crystal-field (D) interactions are large enough, the tricritical point disappears in the (kT/J, K/J) plane. On the other hand, the system always exhibits a tricritical behavior in the phase diagram of (kT/J, D/J) plane. Received 8 June 2001 and Received in final form 28 September 2001  相似文献   

16.
We compute the quantum dissonance Q (non-entangled quantum correlation), entanglement E, quantum discord D (total quantum correlation) and classical correlation C in the eight-qubit XXZ spin-1/2 chain at finite temperatures. We find that not only D but also Q and C can clearly detect the critical points associated to quantum phase transitions for this model at finite temperatures. Moreover, Q can detect the special points of the system where the entanglement just appears or completely vanishes. Finally, we obtain two simple dominance relations: CE and DE+Q. Except these there are no other simple ordering relations in this model.  相似文献   

17.
A bilayer spin-1/2 Ising model consisting of two superposed Bethe lattices with antiferromagnetic/ferromagnetic interactions is studied by the use of exact recursion relations in a pairwise approach in the presence of an external staggered magnetic field. Besides the ground state phase diagrams calculated in different possible planes of the model parameters space, the thermal variations of the order-parameters and the free energy are investigated to obtain the temperature-dependent phase diagrams of the model for different values of the coordination numbers q. Our calculations reveal that depending on the strength of the model parameters, the model exhibits a variety of interesting phase transitions and therefore phase diagrams.  相似文献   

18.
We study the Klein-Gordon and Dirac equations in the presence of a background metric ds2=−dt2+dx2+e−2gx(dy2+dz2) in a semi-infinite lab (x>0). This metric has a constant scalar-curvature R=6g2 and is produced by a perfect fluid with equation of state p=−ρ/3. The eigenfunctions of spin-0 and spin-1/2 particles are obtained exactly, and the quantized energy eigenvalues are compared. It is shown that both of these particles must have nonzero transverse momentum in this background. We show that there is a minimum energy E2min=m2c4+g2c2?2 for bosons (EKG>Emin), while the fermions have no specific ground state (EDirac>mc2).  相似文献   

19.
The phase diagrams of two nanoscaled thin films with bond and site dilutions at the surfaces, described by the spin-1 transverse Ising model, are investigated by the use of an effective field theory with correlations. A number of characteristic phenomena have been found in them, which are heavily dependent on the ratios (r = J1/J and p = ΩS/Ω, where J is the exchange interaction in the inner layer, J1 is the exchange interaction between the surface and the next inner layer, ΩS is the transverse field at the surfaces and Ω is the transverse field in the inner layer). Some of them have exhibited very similar behaviors found in the two spin-1/2 nanoscaled thin films with bond and site dilutions at the surfaces.  相似文献   

20.
Thermodynamic properties and phase diagrams of a mixed spin-(1,2) Ising ferrimagnetic system with single ion anisotropy on hexagonal nanowire are studied by using effective-field theory with correlations. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found. The effect of the Hamiltonian parameters on phase diagrams are examined in detail. Besides second-order phase transition, lines of first-order transition and tricritical points are found. In particular, we found that for some negative values of single-ion anisotropies, there exist first-order phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号