首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Retention prediction models for a group of pyrazines chromatographed under reversed-phase mode were developed using multiple linear regression (MLR) and artificial neural networks (ANNs). Using MLR, the retention of the analytes were satisfactorily described by a two-predictor model based on the logarithm of the partition coefficient of the analytes (log P) and the percentage of the organic modifier in the mobile phase (ACN or MeOH). ANN prediction models were also derived using the predictors derived from MLR as inputs and log k as outputs. The best network architecture was found to be 2-2-1 for both ACN and MeOH data sets. The optimized ANNs showed better predictive properties than the MLR models especially for the ACN data set. In the case of the MeOH data set, the MLR and ANN models have comparable predictive performance.  相似文献   

3.
The development of retention prediction models for the seven ginsenosides Rf, Rg1, Rd, Re, Rc, Rb2, and Rb1 on a polyamine-bonded stationary phase in hydrophilic interaction chromatography (HILIC) is presented. The models were derived using multiple linear regression (MLR) and artificial neural network (ANN) using the logarithm of the retention factor (log k) as the dependent variable for four temperature conditions (0, 10, 25, and 40 degrees C). Using stepwise MLR, the retention of the analytes in all the temperature conditions was satisfactorily described by a two-predictor model wherein the predictors were the percentage of ACN (%ACN) in the mobile phase and local dipole index (LDI) of the compounds. These predictors account for the contribution of the solute-related variable (LDI) and the influence of the mobile phase composition (%ACN) on the retention behavior of the ginsenosides. A comparison of the models derived from both MLR and ANN revealed that the trained ANNs showed better predictive abilities than the MLR models in all temperature conditions as demonstrated by their higher R(2) values for both training and test sets and lower average percentage deviation of the predicted log k from the observed log k of the test compounds. The ANN models also showed excellent performance when applied to the prediction of the seven ginsenosides in different sample matrices.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
《中国化学会会志》2018,65(5):567-577
Calpeptin analogs show anticancer properties with inhibition of calpain. In this work, we applied a quantitative structure–activity relationship (QSAR) model on 34 calpeptin derivatives to select the most appropriate compound. QSAR was employed to generate the models and predict the more significant compounds through a series of calpeptin derivatives. The HyperChem, Gaussian 09, and Dragon software programs were used for geometry optimization of the molecules. The 2D and 3D molecular structures were drawn by ChemDraw (Ultra 16.0) and Chem3D (Pro16.0) software. The Unscrambler program was used for the analysis of data. Multiple linear regression (MLR‐MLR), partial least‐squares (MLR‐PLS1), principal component regression (MLR‐PCR), a genetic algorithm‐artificial neural networks (GA‐ANN), and a novel similarity analysis‐artificial neural network (SA‐ANN) method were used to create QSAR models. Among the three MLR models, MLR‐MLR provided better statistical parameters. The R2 and RMSE of the prediction were estimated as 0.8248 and 0.26, respectively. Nevertheless, the constructed model using GA‐ANN revealed the best statistical parameters among the studied methods (R2 test = 0.9643, RMSE test = 0.0155, R2 train = 0.9644, RMSE train = 0.0139). The GA‐ANN model is found to be the most favorable method among the statistical methods and can be employed for designing new calpeptin analogs as potent calpain inhibitors in cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号