首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methacryloyl groups are delivered on a living cell surface via a glycosylation pathway. The mannosamine derivative ManMA is synthesized as a precursor of cell-surface sialic-acid residues. HeLa cells are cultivated in a culture medium containing ManMA, after which a sufficient amount of PEG(4)10K-SH is in contact with the cells in the presence of a photoinitiator. The cells are then exposed to UV-light for 10 min. The immobilization of PEG(4)10K-SH, termed PEGylation, on the cell surface is confirmed by fluorescence microscopy. The surface modification does not influence cell viability. Biotinylation of cell surface can also be achieved by the addition of a vinyl compound during PEGylation. By using this process, the functionalities of a cell surface can be freely controlled.  相似文献   

2.
3.
A biodegradable and amphiphilic copolymer, mPEG-b-P(LA-co-MAC/TMA) that contains pendant 1,2-bidentate carboxyl groups is synthesized by thiol-ene radical addition and is further used to chelate with the active anticancer species (DACH-Pt) of oxaliplatin to form an mPEG-b-P(LA-co-MAC/TMA-Pt-DACH) complex. The polymer platinum complex can self-assemble into micelles. In vitro studies show that the DACH-Pt micelles display enhanced or comparable cytotoxicity against SKOV-3 and MCF-7 cancer cells, while they show reduced toxicity to HeLa cells compared with oxaliplatin.  相似文献   

4.
5.
When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new “identity” and determine their biological fate. Protein–nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non‐covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide‐co‐ε‐caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol‐ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol‐ene reaction.  相似文献   

6.
7.
8.
A new platform technology for the preparation of stable chiral stationary phases was successfully optimized. The chiral selector tert‐butylcarbamoylquinine was firstly covalently connected to the polymer poly(3‐mercaptopropyl)methylsiloxane by thiol‐ene click reaction. Secondly, the quinine carbamate functionalized polysiloxane conjugate was coated onto the surface of vinyl modified silica particles and cross‐linked via thiol‐ene click reaction. The amount of polysiloxane, chiral selector, radical initiator, reaction solvent (chloroform and methanol), reaction time, and pore size of the supporting silica particles were varied and systematically optimized in terms of achievable plate numbers while maintaining simultaneously enantioselectivity. The optimization was based on elemental analysis data, chromatographic results, and H/u‐curves (Van Deemter) of the resultant chiral stationary phases. The results suggest that better chromatographic efficiency (higher plate numbers) at equal enantioselectivity can be achieved with methanol (a poor solvent for the polysiloxane that is dispersed rather than dissolved) and a lower film thickness of quinine carbamate functionalized polysiloxane. In this study, chiral stationary phases based on 100 Å silica slightly outperformed 200 Å silica particles (each 5 μm). The optimized two step material exhibited significantly reduced mass transfer resistance compared to the one step material and equal performance as a brush‐type chiral stationary phase.  相似文献   

9.
Three‐dimensional microstructures are fabricated employing the direct laser writing process and radical thiol‐ene polymerization. The resin system consists of a two‐photon photoinitiator and multifunctional thiols and olefins. Woodpile photonic crystals with 22 layers and a rod distance of 2 μm are fabricated. The structures are characterized via scanning electron microscopy and focused ion beam milling. The thiol‐ene polymerization during fabrication is verified via infrared spectroscopy. The structures are grafted in a subsequent thiol‐Michael addition reaction with different functional maleimides. The success of the grafting reaction is evaluated via laser scanning microscopy and X‐ray photoelectron spectroscopy. The grafting density is calculated to be close to 200 molecules μm−2.  相似文献   

10.
We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An aldehyde-terminated monolayer on glass or on gold was obtained by the reaction between an amino-terminated monolayer and terephthaldialdehyde. The aldehyde monolayer was employed as a substrate for the direct microcontact printing of bioengineered, collagen-like proteins by using an oxidized poly(dimethylsiloxane) (PDMS) stamp. After immobilization of the proteins into adhesive "islands", the remaining areas were blocked with amino-poly(ethylene glycol), which forms a layer that is resistant to cell adhesion. Human malignant carcinoma (HeLa) cells were seeded and incubated onto the patterned substrate. It was found that these cells adhere to and spread selectively on the protein islands, and avoid the poly(ethylene glycol) (PEG) zones. These findings illustrate the importance of microcontact printing as a method for positioning proteins at surfaces and demonstrate the scope of controlled surface chemistry to direct cell adhesion.  相似文献   

11.
Covalent surface modification of solid cellulose with well‐defined and chemically reactive dendrons is introduced as a platform for cellulose grafting with functional materials. Surface functionalization with a first generation dendron is achieved by esterification employing bifunctional molecules based on 2,2‐bis(hydroxymethyl) propionic acid (bis‐MPA) under mild conditions and short reaction times. The activated cellulose surface displays hydrophobic properties and contains two reactive alkene end‐groups per graft, which are used for covalent binding to active agents, as demonstrated by selective functionalization of the modified cellulose with fluorescent dye via photopatterning. The number of active end‐groups on the surface of cellulose is multiplied by divergent solid‐state synthesis of second and third generation dendrons having four and eight reactive sites per dendron, respectively. The dendrons are assembled in only few hours by a sequence of thiol‐ene/esterification reactions. The ability to accurately control the number of binding sites on the surface of cellulose allows fine tuning of the surface properties, as shown by the attachment of hydrophobic small molecules to the dendronized cellulose. The first, second and third generation dendrons allow preparing surfaces with increasing hydrophobicities; second and third generation dendrons functionalized with small perfluoroalkyl molecule display superhydrophobic properties. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2103–2114  相似文献   

12.
Herein, a kind of fluorescent resveratrol nanogels via one‐pot thiol‐ene Michael addition polymerization of resveratrol triacrylate, 1,6‐hexanedithiol, and methoxyl poly(ethylene glycol) acrylate is prepared. The resultant nanogels can be well‐dispersed in water with a hydrodynamic radius of around 68 nm, and the nanogels are stable in both water and organic solvents. Moreover, the resveratrol nanogels exhibit elevated fluorescence intensity compared to free resveratrol, and the quantum yield of resveratrol nanogels is estimated to be 5.8 times as that of free resveratrol dispersed in water. Fluorescence image results also demonstrate that the resveratrol nanogels can be used for cell imaging in MCF‐7 human breast cancer cells. Therefore, the resveratrol nanogels are expected to be used as a trackable drug delivery system.  相似文献   

13.
We present an efficient method for functionalizing the large polymer–air interface of a gyroid nanoporous polymer. The hydrophilicity of nanoporous cross‐linked 1,2‐polybutadiene is tuned by thiol‐ene photo‐grafting of mercaptosuccinic acid or sodium 2‐mercaptoethanesulfonate. The reaction is monitored by FT‐IR, UV–Vis, contact angle, and gravimetry. Overall quantum yields are calculated for the two thiol‐ene “click” reactions in nano‐confinement, neatly revealing their chain‐like nature. Top–down photolithographic patterning is demonstrated, realizing hydrophilic nanoporous “corridors” exclusively hosting water. The presented approach can be relevant for many applications where, e.g., high control and contrast in hydrophilicity, chemical functionality or refractive index are needed.

  相似文献   


14.
The morphology of sparse filament networks formed during photopolymerization‐induced phase separation of mixtures of NOA81 (a UV‐curable thiol‐ene adhesive) in mixed cosolvents consisting of water, diglyme, and polyethers of varying molecular weight was investigated as a function of the molecular weight and relative amount of the polyethers used. During photopolymerization (50 mW/cm?2 of 365 nm radiation for 60 s) of solutions containing 5 wt % NOA81 and a total oligo‐ether or polyether to water ratio of 8:1 by weight, viscoelastic phase separation produced a sparse network of interconnected NOA81 filaments. During the subsequent evaporation and/or solidification of the solvents, the network compacted significantly via a collapse process that was curtailed by increasing both the weight fraction and molecular weight of the nonvolatile polyether. The influence of mass and momentum transport processes on the collapse of the phase‐separated network and the resultant final morphology was determined with the aid of dimensional analysis, leading to the identification of sedimentation and compaction driven by the motion of the interface as key factors. The networks exhibiting the least collapse combine a high level of interconnectivity and specific surface area with a low occupied volume fraction while being fabricated via a simple, template‐free process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 396–410, 2010  相似文献   

15.
Making light work of ligation: A novel method utilizes light for oxime ligation chemistry. A quantitative, low-energy photodeprotection generates aldehyde, which subsequently reacts with aminooxy moieties. The spatial control allows patterning on surfaces with a fluoro marker and GRGSGR peptide, and can be imaged by time-of-flight secondary-ion mass spectrometry.  相似文献   

16.
When lysozyme is dissolved in a neutral HEPES buffer solution (pH = 7.4) with 0.001–0.050 M TCEP added, a fast phase transition process occurs and the resulting novel fiber‐like hierarchical supramolecular assemblies made by primary spherical‐particle aggregation can function as a “superglue” that binds strongly and quickly onto non‐fouling coatings. This binding is highly selective towards lysozyme, and excludes synthetic, chemical/physical activation/deactivation (blocking) steps. By using biotinylated lysozyme, such a phase transition quickly creates a perfect biotinylated surface on non‐fouling surfaces for avidin binding, showing great potential for the development of low‐cost and practical biochips.

  相似文献   


17.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

18.
We report a facile method that combined sol–gel reaction, reversible addition–fragmentation chain transfer (RAFT)/macromolecular design via interchange of the xanthates process and thiol‐ene click reaction to prepare monodisperse silica core‐poly(N‐vinylimidazole) (PVim) shell microspheres of 200 nm in average diameters. First, silica with C = C double bonds was prepared by the sol–gel reaction of 3‐(trimethoxysilyl)propyl methacrylates (MPS) with tetraethoxysilane in ethanol; SiO2@PVim were subsequently prepared by grafting PVim chain (Mn = 9800 g/mol, polydispersity index = 1.22) to MPS‐SiO2 via the thiol‐ene click chemisty. The obtained SiO2@PVim microspheres show higher catalytic activity toward the hydrolysis of p‐nitrophenyl acetate compared with the PVim homopolymers. The as‐prepared composites have been characterized by scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis and Fourier transform infrared spectrometry analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Zhiqing Shi  Ying Wang 《Liquid crystals》2013,40(12):1746-1752
ABSTRACT

Nucleophile-initiated thiol-ene click reaction is a highly novel and efficient method of preparing polymer-dispersed liquid crystal (PDLC) films. The effects of thiol monomers on the electro-optical properties of PDLC films prepared by nucleophile-initiated thiol-ene click reaction were investigated in this work. The thiol monomers were dithiol, trithiol, tetrathiol or their mixture. It was found that the increase of functionality could lead to the increase of threshold voltage and saturation voltage and the decrease of off-state transmittance. The influence of reaction temperature was also investigated. The results indicated that functionality and reaction temperature had combined effects on the electro-optical properties of PDLC films.  相似文献   

20.
We report the morphological changes on Ge surfaces upon 50 keV Ar+ and 100 keV Kr+ beam irradiation at 60° angle of incidence. The Ge surfaces having three different amorphous–crystalline (a/c) interfaces achieved by the pre‐irradiation of 50 keV Ar+ beam at 0°, 30° and 60° with a constant fluence of 5 × 1016 ions/cm2 were further processed by the same beam at higher fluences viz. 3 × 1017, 5 × 1017, 7 × 1017 and 9 × 1017 ions/cm2 to understand the mechanism of nano‐scale surface patterning. The Kr+ beam irradiation was carried out only on three fresh Ge surfaces with ion fluences of 3 × 1017, 5 × 1017 and 9 × 1017 ions/cm2 to compare the influence of projectile mass on surface patterning. Irrespective of the depth of a/c interface, the nanoscale surface patterning was completely missing on Ge surface with Ar+ beam irradiation. However, the surface patterning was evidenced upon Kr+ beam irradiation with similar ion fluences. The wavelength and the amplitude of the ripples were found to increase with increasing ion fluence. In the paper, the mass redistribution at a/c interface, the incompressible solid flow through amorphous layer, the angular distribution of sputtering/backscattering yields and the generation of non‐uniform stress across the amorphous layer are discussed, particularly in analogy with low energy experiments, to get better understanding of the mechanism of nanoscale surface patterning by the ion beams. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号