首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel synthetic route to amphiphilic acrylamide-based monolithic stationary phases for capillary electrochromatography (CEC) employing water-soluble cyclodextrins as solubilizing agents was explored. N,N'-Octamethylenebisacryamide and N,N'-dodecamethylenebisacryamide were synthesized and their solubilization in aqueous solution with derivatized and underivatized cyclodextrins of different cavity size was studied. Amphiphilic stationary phases were synthesized by free radical copolymerization of the bisacrylamide-cyclodextrin host-guest complexes with hydrophilic monomers and an additional hydrophilic cross-linker in aqueous solution. Complex formation in solution and removal of the complexed cyclodextrin from the polymer during synthesis was studied with 1H-NMR and solid state 13C-NMR spectroscopy and cyclodextrin-modified micellar electrokinetic chromatography. The impact of the incorporated alkylene groups in the acrylamide-based macroporous polymer on retention was studied with neutral solutes by CEC in the normal-phase elution mode and in the reversed-phase elution mode. Batch-to-batch reproducibility of the synthesis procedure and day-to-day repeatability of the separations achieved were investigated. With these capillaries, a sufficiently high electroosmotic flow velocity, a high reproducibility and repeatability of separation parameters and high plate numbers (up to 200,000 m(-1) were obtained.  相似文献   

2.
Hao X  Liang C  Jian-Bin C 《The Analyst》2002,127(6):834-837
The interaction between adenine and beta-CD has been investigated in solution and in the solid state by several analytical techniques, primarily by 1H-NMR, 2D ROESY and fluorescence spectra, and secondarily by other important techniques, for example, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The association constant and 1:1 nature of the complex between adenine and beta-CD in solution were determined by fluorescence spectroscopy. A spatial configuration for the complex in solution is proposed from analysis of the 1H-NMR and 2D ROESY data. The Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) data are consistent with the formation of an inclusion complex. In addition, a solid inclusion complex of adenine with beta-CD was synthesized by the coprecipitation method.  相似文献   

3.
Employing solubilization by complexation with CDs, new mixed-mode monolithic stationary phases for CEC and micro-LC were synthesized. Free radical copolymerization was performed in aqueous solution with a CD-solubilized hydrophobic monomer, a water-soluble crosslinker (piperazinediacrylamide), and a charged monomer (vinylsulfonic acid). Different hydrophobic methacrylate monomers (isobornyl, adamantyl, cyclohexyl, and phenyl methacrylate) were investigated. Chromatographic properties of the synthesized monoliths were studied with aqueous and nonaqueous mobile phases with hydrophobic and polar analytes. Due to the amphiphilic nature of the polymers synthesized, the elution orders obtained correspond to the RP mode and to the normal-phase mode dependent on the polarity of the mobile phase. However, observations made with polar solutes and polar mobile phase can only be explained by a mixed-mode retention mechanism. The influence of the total monomer concentration (%T) on the chromatographic properties and on the specific permeability was elucidated. Run-to-run, day-to-day, and capillary-to-capillary reproducibility of electroosmotic mobility and retention factors were determined. Comparison of retention data with those of a commercial octadecyl silica gel HPLC column reveals that the methylene selectivity of the monolithic capillaries prepared in this study is very similar to that of routinely used octadecyl silica gels.  相似文献   

4.
The interaction of cloxacillin sodium with beta-cyclodextrin (beta-CD) has been studied by several analytical techniques, including (1)H NMR, fluorescence spectroscopy, infrared spectroscopy. In this paper, solid inclusion complex of cloxacillin sodium with beta-CD was synthesized by the coprecipitation method. In addition, the characterization of the inclusion complex has been proved by fluorimetry, infrared spectroscopy and 1D, 2D NMR. The experimental results confirmed the existence of 1:1 inclusion complex of cloxacillin sodium with beta-CD. The formation constant of complex was determined by fluorescence method and (1)H NMR. Spacial configuration of complex has been proposed on 2D NMR technique.  相似文献   

5.
This paper describes the synthesis and electrochemistry of biferrocenyl-terminated dendrimers and their beta-cyclodextrin (beta-CD) inclusion complexes in aqueous solution and at surfaces. Three generations of poly(propylene imine) (PPI) dendrimers, decorated with 4, 8, and 16 biferrocenyl (BFc) units, respectively, were synthesized. A water-soluble BFc derivative forms stable inclusion complexes with beta-CD. The intrinsic binding constant is K(i)=2.5 x 10(4) M(-1). The BFc dendrimers were solubilized in water by complexation of the end groups with beta-CD, resulting in large water-soluble supramolecular assemblies. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) showed that all the end groups are complexed to beta-CD. Adsorption of the dendrimers at self-assembled monolayers (SAMs) of heptathioether-functionalized beta-CD on gold ("molecular printboards") resulted in stable monolayers of the dendrimers due to the formation of multivalent host-guest interactions between the BFc end groups of the dendrimers and the immobilized beta-CD molecules. The number of interacting end groups is 3, 4, and 4 for dendrimer generations 1, 2, and 3, respectively. The complexation of BFc to beta-CD is sensitive to the oxidation state of the BFc unit. Oxidation of neutral BFc-Fe(2) ((II,II)) to the cationic, mixed-valence biferrocenium BFc-Fe(2) ((II,III)+) resulted in dissociation of the host-guest complexes. Scan-rate-dependent CV and DPV analyses of the dendrimer-beta-CD assemblies immobilized at the beta-CD host surface and in solution revealed that the dendrimers are oxidized in three steps. First, the surface-beta-CD-bound BFc moieties are oxidized to the mixed-valence state, Fe(2) ((II,III)+), followed by the oxidation of the non-surface-interacting BFc groups to the Fe(2) ((II,III)+) state. The third step involves the oxidation of all the BFc moieties to the Fe(2) ((III,III)2+) state.  相似文献   

6.
The interaction of sparfloxacin with beta-cyclodextrin (beta-CD) has been studied by several analytical techniques, including 1H-NMR, 13C-NMR, fluorescence spectroscopy, infrared spectroscopy, thermal analysis, and scanning electron microscope. In this paper, solid inclusion complex of sparfloxacin with beta-CD was synthesized by the coprecipitation method. In addition, the characterization of the inclusion complex has been proved by fluorimetry, Infrared, differential scanning calorimetry and 1D, 2D NMR. The experimental results confirmed the existence of 1:1 inclusion complex of sparfloxacin with beta-CD. The formation constant of complex was determined by fluorescence method and 1H-NMR. Spacial configuration of complex has been proposed on 2D NMR techniques.  相似文献   

7.
Several subphthalocyanine derivatives that contain an alkoxo substituent as an axial ligand (RO-Subpc, R = 9-anthracenemethyl, benzyl, phenyl, 3,5-dimethylbenzyl, 3,5-dimethylphenyl, 4-methylbenzyl, and 4-methylphenyl) were synthesized. The formation of inclusion complexes of RO-Subpc with beta-CD in DMSO and at the toluene/water interface was investigated by UV/Vis absorption spectroscopy, induced circular dichroism (ICD), and nuclear magnetic resonance (NMR) measurements. Interfacial tension measurements suggested that beta-CD adsorbed as a monolayer at the toluene/water interface and probably orientated towards the toluene phase with its primary face. The 1:1 composition of beta-CD.RO-Subpc inclusion complexes was confirmed in DMSO and at the toluene/water interface for BzO-Subpc, PhO-Subpc, MeBzO-Subpc, and MePhO-Subpc. A 2:1 inclusion complex of AnO-Subpc formed in DMSO. The observed ICD spectra of beta-CDRO-Subpc inclusion complexes are discussed with respect to molecular modeling and the simulation based on Tinoco-Kirkwood theory. Interestingly, the ICD spectra of beta-CD.BzO-Subpc and beta-CD.MeBzO-Subpc inclusion complexes exhibited a negative sign in DMSO and a positive sign at the toluene/water interface. This reversal of the ICD sign strongly suggests a difference in the structure of the inclusion complexes: beta-CD at the interface formed the inclusion complex with its primary face, whereas the secondary face of beta-CD bound favorably to RO-Subpc in DMSO.  相似文献   

8.
温度对蛋白和β-环糊精手性固定相拆分对映体的影响   总被引:6,自引:1,他引:5  
 采用三聚氯氰为活化剂分别合成了牛血清白蛋白 (BSA)、人血清白蛋白 (HSA)和 β 环糊精手性固定相 ,研究了温度在色氨酸 ,华法令 ,酮基布洛芬和丹酰化苏氨酸手性拆分中的影响。结果表明 ,在蛋白手性固定相上对映体间的熵变对色氨酸 ,华法令和酮基布洛芬的拆分有很大的影响 ,而丹酰化苏氨酸对映体在 β 环糊精手性固定相上的拆分为典型的焓控过程 ,与蛋白柱有着不同的热力学特性。由于键合方式不同 ,色氨酸在我们合成的BSA手性固定相上的最佳分离温度为 35℃左右 ,而不是文献报道的以戊二醛为活化剂的 2 4℃。  相似文献   

9.
A series of amphiphilic macroporous mixed-mode acrylamide-based continuous beds bearing positively charged quaternary ammonium groups is synthesized for capillary electrochromatography (CEC) under variation of the concentration of the cationic monomer in the polymerization mixture. Positively charged mixed-mode monolithic stationary phases are synthesized in pre-treated fused silica capillaries of 100 µm I.D via single step free radical copolymerization of cyclodextrin-solubilized N-tert-butylacrylamide, a hydrophilic crosslinker (piperazine diacrylamide), a hydrophilic neutral monomer (methacrylamide), and a positively charged monomer ([2-(methacryloyloxy)ethyl]trimethyl ammonium methyl sulfate) in aqueous solution containing the lyotropic salt ammonium sulfate as a pore-forming agent. The synthesized monolithic stationary phases contain hydrophobic, hydrophilic, and charged functionalities. They can be employed for the CEC separations of different classes of neutral and charged solutes (with varied polarity) in the reversed-phase mode, in the normal-phase mode, in the ion-exchange mode, in a mixed-mode, or in the hydrophilic interaction liquid chromatography (HILIC) mode. The influence of the concentration of the cationic monomer in the polymerization mixture on retention factor, electroosmotic mobility, and methylene selectivity (αmeth) is studied under isocratic conditions for alkylphenones in the reversed-phase mode by capillary electrochromatography (CEC). Scanning electron microscopy (SEM) micrographs demonstrate that the morphology of the synthesized monoliths (i.e., the domain size) is strongly influenced by the variation of the concentration of the cationic monomer in the polymerization mixture.  相似文献   

10.
Solid inclusion complexes of two tanshinones (Tans): tanshinone IIA (Tan IIA), tanshinone I (Tan I) with beta-cyclodextrin (beta-CD) were synthesized by coprecipitation method. The solid inclusion complexes were characterized by using several analytical techniques: (1)H NMR spectra, IR spectra and thermal analysis. Stoichiometry of the inclusion complexes of Tans with beta-CD or HP-beta-CD is 1:1 which was investigated in solution. The formation constants of the complexes were determined by UV spectrophotometry. For same kind of CD, the stability was in the order: Tan IIA > Tan I; for same guest, the stability was in the order: HP-beta-CD > beta-CD. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, Delta G, Delta H, Delta S were determined as well. The experimental results indicate that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative entropic contribution. The inclusion interaction between CD and Tans satisfied the law of enthalpy-entropy compensation.  相似文献   

11.
The interaction of ciprofloxacin with beta-cyclodextrin (betaCD) has been studied by several analytical techniques, including 1H-NMR (nuclear magnetic resonance),13C-NMR, fluorescence spectroscopy, infrared (IR) spectroscopy, thermal analysis, and scanning electron microscope. In this paper, solid inclusion complex of ciprofloxacin with beta-CD was synthesized by the coprecipitation method. In addition, the characterization of the inclusion complex has been proved by fluorimetry, IR, differential scanning calorimetry and 1D, 2D NMR. The experimental results confirmed the existence of 1:1 inclusion complex of ciprofloxacin with beta-CD. The formation constant of complex was determined by fluorescence method and 1H-NMR. Spatial configuration of complex has been proposed on two dimensional NMR technique.  相似文献   

12.
The mechanism of the inclusion of orange G and beta-cyclodextrin (beta-CD) has been studied by using both spectrophotometry and infrared spectroscopy. Effects of the pH, concentrations of beta-CD, and ionic strength on the inclusion complex of beta-CD and orange G were examined. The result showed that orange G reacts with beta-CD to form a 1:1 host-guest complex with an apparent formation constant of 3.03 x 10(3)mol(-1)l. The thermodynamic parameters of inclusion complex, DeltaG(0), DeltaH(0), and DeltaS(0) were obtained. Based on the enhancement of the absorbance of orange G produced through complex formation, a ratiometric method spectrophotometrically for the determination of orange G in bulk aqueous solution in the presence of beta-CD was developed, which overcome the effect of condition change on the determination of orange G. The linear relationship between the absorbance and orange G concentration was obtained in the range of 1.0 x 10(-5) to 4.0 x 10(-5)mol l(-1), with a correlation coefficient of 0.9998. The detection limit was 3.6 x 10(-6)mol l(-1). The principal advantage of the proposed method is high accuracy because ratiometry was used in measurement.  相似文献   

13.
分子印迹技术在毛细管电色谱中的应用   总被引:2,自引:0,他引:2  
分子印迹技术是制备具有分子识别功能聚合物,即分子印迹聚合物(MIPs)的一种新技术;毛细管电色谱(CEC)是一个具有发展前途的色谱新技术。将分子印迹技术和毛细管电色谱两种新技术相结合,优势互补,具有极大的发展潜力。本文对分子印迹技术在毛细管电色谱中的应用,以及各类MIPs-CEC毛细管柱的制备方法进行了较为全面的综述,引用文献52篇。  相似文献   

14.
In aqueous solutions, inclusion complexation of Fe(III) tetrakis(4-sulfonatophenyl)porphyrin (FeTSPP) with alpha-cyclodextrin (alpha-CD), beta-CD, gamma-CD, and heptakis(2,3,6-tri-O-methyl)-beta-CD (TM-beta-CD) has been examined by means of absorption and induced circular dichroism spectroscopy. FeTSPP has been found to form inclusion complexes with beta-CD, gamma-CD, and TM-beta-CD in pH 3.2 buffers. At pH 10.1, where FeTSPP self-associates to form an oxo-bridged dimer, FeTSPP also forms inclusion complexes with alpha-CD, beta-CD, gamma-CD, and TM-beta-CD. The stoichiometries of the CD-FeTSPP inclusion complexes are 1:1, except for TM-beta-CD in pH 10.1 buffers where its 1:1 inclusion complex associates with TM-beta-CD to form a 2:1 inclusion complex at high TM-beta-CD concentrations. Equilibrium constants of FeTSPP for the formation of the 1:1 inclusion complexes have been evaluated for beta-CD, gamma-CD, and TM-beta-CD. Induced circular dichroism spectra of FeTSPP in alpha-CD and beta-CD solutions exhibit a signal pattern (a negative sign) that is different from those in acidic and basic solutions containing gamma-CD and that in basic solution containing TM-beta-CD, suggesting different inclusion modes towards FeTSPP.  相似文献   

15.
Based on the fact that tolnaftate degrade to beta-naphthol sodium (RONa) at 5.00 mol/L NaOH solution and RO(-) was protonated to ROH after being acidified and adjusted to the pH 4.50 by acetic acid-sodium acetate buffer solution, we studied and discussed the mechanism of the supramolecular multirecognition interaction among the anionic surfactants sodium lauryl sulfate (SLS), beta-cyclodextrin (beta-CD), and beta-naphthol (ROH) by means of fluorescence spectrum, surface tension of the solution, infrared spectrograms, and (1)HNMR spectroscopy. The apparent formation constant of the ternary inclusion complex was determined to be (5.48 +/- 0.13) x 10(3) L(2)/mol(2). The thermodynamic parameters (DeltaG degrees, DeltaH degrees, DeltaS degrees ) for the formation of the inclusion complexes were obtained from the van't Hoff equation. It was indicated that the multiple and synergistic protection effect of SLS and beta-CD on the excited singlet state ROH played very important roles in the enhancement of the fluorescence of ROH. Results showed that, at room temperature, the naphthalene ring of ROH and the hydrophobic hydrocarbon chain of SLS were included into the cavity of beta-CD to form a ROH/SLS/beta-CD ternary inclusion complex with stoichiometry of 1:1:1, which provided effective protection for the excited state of ROH and increased the fluorescent intensity of ROH obviously.  相似文献   

16.
A series of bridged bis(beta-cyclodextrin(CD))s (2-7) were synthesized, i.e., bridged bis(beta-CD)s 2 and 3 bearing binaphthyl or biquinoline tethers and bridged bis(beta-CD)s 4-7 possessing dithiobis(benzoyl) tether, and their complex stability constants (KS), enthalpy (DeltaH degrees), and entropy changes (DeltaS degrees) for the 1:2 inclusion complexation with representative steroids, deoxycholate, cholate, glycocholate, and taurocholate, have been determined in an aqueous phosphate buffer solution of pH 7.20 at 298.15 K by means of titration microcalorimetry. The original conformations of bridged bis(beta-cyclodextrin)s were investigated by circular dichroism and 1H ROESY spectroscopy. Structures of the inclusion complexes between steroids and bridged bis(beta-CD)s in solution were elucidated by 2D NMR experiments, indicating that anionic groups of two steroid molecules penetrate, respectively, into the two hydrophobic CD cavities in one 6,6'-bridged bis(beta-CD) molecule from the secondary rim to give a 1:2 binding mode upon inclusion complexation. The results obtained from titration microcalorimetry and 2D NMR experiments jointly demonstrate that bridged bis(beta-CD)s 2, 3 and 5-7 tethered by protonated amino group possessing different substituted groups can enhance not only the molecular binding ability toward steroids by electrostatic interaction but also molecular selectivity. Thermodynamically, the resulting 1:2 bis(beta-CD)-steroid complexes are formed by an enthalpy-driven process, accompanied by smaller entropy loss. The increased complex stability mainly results from enthalpy gain, accompanied by large conformational change and extensive desolvation effects for the 1:2 inclusion complexation between bis(beta-CD)s and steroids.  相似文献   

17.
Al-catechin/beta-cyclodextrin and Al-quercetin/beta-cyclodextrin (beta-CD) inclusion compounds were synthesized and characterized by IR, UV-vis, 1H and 13C NMR and TG and DTA analyses. Because quercetin is sparingly soluble in water, the stability constants of the Al-quercetin/beta-CD and Al-catechin/beta-CD compounds were determined by phase solubility studies. The AL-type diagrams indicated the formation of 1:1 inclusion compounds and allowed calculation of the stability constants. The thermodynamic parameters were obtained from the dependence of the stability constants on temperature and results indicated that the formation of the inclusion compounds is an enthalpically driven process. The thermal decomposition of the solid Al-quercetin/beta-CD and Al-catechin/beta-CD inclusion compounds took place at different stages, compared with the respective precursors, proving that an inclusion complexation process really occurred.  相似文献   

18.
The interaction of progesterone with beta-cyclodextrin (beta-CD) was studied by differential pulse polarography. The aim of the present work was to study the effect of beta-CD on the electrochemical behavior of progesterone in aqueous solution and also to analyze the molecular interactions involved in formation of the inclusion complex. The complex with stoichiometry of 1:1 was thermodynamically characterized. In addition, steered molecular dynamics (SMD) was used to investigate the energetic properties of formation of the inclusion complex along four different pathways (reaction coordinates), considering two possible orientations. From multiple trajectories along these pathways, the potentials of mean force for formation of the beta-CD progesterone inclusion complex were calculated. The energy analysis was in good agreement with the experimental results. In the beta-CD progesterone inclusion complex, a large portion of the steroid skeleton is included in the beta-CD cavity. The lowest energy was found when the D-ring of the guest molecule is located near the secondary hydroxyls of the beta-CD cavity. In the most probable orientation, one intermolecular hydrogen bond is formed between the O of the C-20 keto group of the progesterone and a secondary hydroxyl of the beta-CD.  相似文献   

19.
Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with beta-cyclodextrin self-assembled monolayers (beta-CD SAMs) by inclusion of the hydrophobic substituents in the beta-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible. Even with a monovalent competitor in solution, adsorption to the beta-CD SAMs was observed, and desorption proved impossible. The adsorbed polymer layer was very thin as evidenced by surface plasmon resonance spectroscopy and AFM. Apparently, all or most hydrophobic groups of the polymers were employed efficiently in multivalent binding, as was further supported by the absence of specific binding of beta-CD-modified gold nanoparticles to the polymer surface assemblies. Supramolecular microcontact printing of the polymers onto the beta-CD SAMs led to assembly formation in the targeted areas of the substrates.  相似文献   

20.
Zhang G  Li Y  Fang Y  Han N  Xu B 《Electrophoresis》2003,24(4):693-699
Octadecyl silyl silica (ODS) phase coated with immobilized polysiloxanes (OV1701, SE-54, SE-30) were synthesized, their characteristics as capillary electrochromatography (CEC) column packing materials were studied. It was found that, although the polysiloxane coatings were different in polarity, the resulting packing materials showed the highest efficiencies when the respective coating ratios (polysiloxane:ODS, w/w) were all 20-30%. As expected, packing materials coated with different polysiloxanes resulted in different selectivity on solute pairs. Separations on these stationary phases were studied with different factors such as pH values and acetonitrile contents of the mobile phases. It was found that all these kind of stationary phases could resist basic mobile phase with a pH value as high as 11.6. Tests were made to analyze polar, basic drugs with CEC using the stationary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号