首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
杨涛  唐璇  薛珊  周宛欣  成西涛 《合成化学》2022,30(9):697-703
以4,4'-二(氯甲基)联苯为原料,经水解生成苄醇类化合物4,4'-二(羟甲基)联苯。采用1HNMR, IR, HPLC对产物进行了表征。研究讨论了反应条件、催化剂等因素对产物含量和收率的影响,并且优化了4,4'-二(羟甲基)联苯的合成工艺,提出了可能的催化反应机理。结果表明:聚乙二醇作为催化剂,可与溶液中的阳离子发生络合,增强了亲核试剂的反应活性,提高了反应速率。在优化工艺下反应12 h,粗产品HPLC含量可达97.2%,收率93.9%。  相似文献   

2.
冠醚苯酚共缩聚物的合成与性能   总被引:1,自引:0,他引:1  
束家有  李彤 《应用化学》1994,11(2):13-17
由2,6-二羟甲基-4-甲基(或磺酸基)苯酚分别和芳香族冠醚(B15C5、B18C6、DB18C6、DB24c8等)在强酸催化剂下缩聚,合成了2个系列冠醚共缩聚物。它们的萃取能力和配合作用均优于相应的单冠醚,并可作为树脂吸附分离多种金属离子,作为配合剂测定钾、钠以及作为气相色谱固定液分离多种有机物。  相似文献   

3.
周申范  张国安  李佩芳 《色谱》1987,5(2):73-76
 ]本文叙述了用反相高效液相色谱法分离分析双带药乙醚提取液中硝化甘油和中定剂的方法,以GYT-CH(10μm)为固定相,装入150mm×φ4mm的不锈钢管内,使用甲醇:水(70:30,V/V)作流动相,苯作内标,UV检测器的检测波长为230nm。在几分钟内成功地定量测定了双带火药中硝化甘油和中定剂的含量,并对波长与流动相的选择进行了讨论,测定的方法已满足了部颁标准的要求,并达到了国外同类HPLC分析方法的准确度和精密度。  相似文献   

4.
盐析色层     
色层分离中应用离子交换树脂作为固定相以分离或纯化各种物质的方法,简便而有效,且能分离性质非常相近的物质。近来已成为一个化学的单元操作而获得广泛的应用。离子交换树脂在色层分离中作为固定相而加以应用的可概括为三:(1)离子交换色层(ion exchange chromatogra-phy),是以离子交换树脂为固定相,用电解质溶液(酸、碱或中性盐)为淋洗剂,分离二种或更多种的电解质混合物,如碱金属、希土元素、卤素离子及超铀元素等。(2)离子排斥的方法(ion exclusion),是以离子交换树脂为固定相,用水为淋洗剂,分离电解质与非电解质的混合物。这种方法广泛地用以纯化各种有机物质如葡萄糖、甘油等。(3)盐析色层(salting-out chromatography),是以离子交换树脂为固定相,不同浓度的盐溶液为淋洗剂,分离二种或多种的水溶性非电解质混合物。  相似文献   

5.
该文通过在金属-有机骨架材料(MOF)NH2-MIL-125表面原位生长共价有机骨架材料(COF)TPA-COF,制备了核壳复合材料(MOF@COF)NH2-MIL-125@TPA-COF,采用X-射线粉末衍射(PXRD)、红外光谱(FTIR)和扫描电镜(SEM)等手段对该复合材料进行表征,并将其作为固定相成功制备了NH2-MIL-125@TPA-COF色谱填充柱(25 cm long × 2.1 mm i.d.)。在正相(正己烷-异丙醇(9∶1))、反相(甲醇-水(9∶1))高效液相色谱(HPLC)条件下,考察了该柱对一系列位置异构体的分离性能。结果表明,该柱在较低的背景压力(60~100 kPa)下对9种位置异构体(溴硝基苯、硝基苯胺、氯苯酚、二硝基苯、碘苯胺、溴苯胺、苯二胺、甲苯胺和氯苯胺)表现出较好的分离能力,其中溴硝基苯、硝基苯胺和二硝基苯能达到基线分离,且最大分离度(Rs)为9.71。在反相HPLC条件下,邻-溴硝基苯、间-硝基苯胺和邻-氯苯酚的柱效分别为18 424、19 053、12 954 plates·m-1。以溴硝基苯为分析物,在正相HPLC条件下,考察了该柱的重现性和稳定性。该柱通过5次重复进样(第50次、第100次、第150次、第200次、第250次),溴硝基苯保留时间和峰面积的相对标准偏差(RSD)分别为0.29%和0.89%,表明所制备的色谱柱具有较好的重现性和稳定性。核壳复合材料NH2-MIL-125@TPA-COF作为一种新型的HPLC固定相用于位置异构体分离具有良好的应用前景。  相似文献   

6.
大环抗生素作为一种新型的手性选择器,与高效液相色谱(HPLC)、毛细管电泳(CE)和毛细管电色谱(CEC)等联用,成功分离各类手性化合物~([1~3]).自1994年Armstrong等~([4])首次将大环糖肽抗生素作为手性选择器合成手性固定相以来,适用于手性分离的大环糖肽抗生素键合固定相的制备与应用得到飞速发展.本研究以万古霉素为手性选择剂,制备了万古霉素键合手性固定相液相色谱柱.采用反相高效液相色谱法对谷氨酸对映体进行了拆分,并考察了流动相条件对对映体拆分的影响.  相似文献   

7.
该文采用溶剂热法合成了一种共价有机框架材料(COFs)TpBD-(NO2)2,将TpBD-(NO2)2还原为TpBD-(NH2)2后用D-(-)-α-苯甘氨酸对其进行手性修饰得到手性COFs材料TpBD-(NH2)2-D-(-)-α-苯甘氨酸。对TpBD-(NO2)2、TpBD-(NH2)2及TpBD-(NH2)2-D-(-)-α-苯甘氨酸3种COFs材料进行表征,并采用“网包法”制备了TpBD-(NH2)2-D-(-)-α-苯甘氨酸手性固定相。为考察该固定相的分离性能,将其用于制备高效液相色谱(HPLC)手性柱,并使用正己烷-异丙醇(体积比9∶1)和甲醇-水(体积比9∶1)为流动相,实现了13种手性化合物和5种苯系位置异构体的分离。且该色谱柱具有较好的重现性。实验表明TpBD-(NH2)2-D-(-)-α-苯甘氨酸用作HPLC固定相用于手性物质和苯系位置异构体分离具有良好的研究意义。  相似文献   

8.
以磺化环糊精为毛细管区带电泳(CZE)手性选择剂,成功地分离了3种烯烃的不对称二羟化产物苯基乙二醇、β-甲基苯基-乙二醇和1,2-二苯基乙二醇对映体;考察了不同手性选择剂及其浓度、背景电解质pH值、操作电压等因素对分离的影响,优化了分离条件;对该3种芳香连二醇对映体样品进行了光学纯度检查,并与HPLC测定结果作比较,评价该方法的准确性。结果表明:两批样品中对映体过量(ee)测定值与HPLC法结果相一致,CZE方法简单、准确、分离度好,可用于该芳香连二醇中性化合物的手性拆分和ee值的测定。  相似文献   

9.
藻类肝毒素的富集提取与分离   总被引:9,自引:0,他引:9  
苑宝玲  曲久辉 《分析化学》2001,29(12):1406-1408
采用固相萃取(SPE)和高效液相色谱法(HPLC)对蓝绿藻肝毒素进行富集与分离。以悦目颤藻为研究对象,选择最佳方式破坏其细胞,使其释放出细胞内肝毒素,对肝毒素进行SPE富集提取。用反相HPLC技术,以C18柱作分离术,32%乙腈-水(含0.01mol/L乙酸铵)为流动相,达到了对藻类肝毒素的良好分离。  相似文献   

10.
为解决高效液相色谱(HPLC)固定相非均相合成中产物多变和重现性差等问题,该文采用均相合成新方法,制备了既含有二十二碳烷基(C22)、又嵌入脲(U)和/或酰胺(A)强极性基团的两种新型两亲性色谱固定相C22-A和C22-A/U。通过元素分析、核磁等手段,证实制备的两种新型固定相含有碳、氮元素,且碳氮元素比例符合理论值,表明酰胺和脲基极性基团成功键合到硅胶上。通过对多种样品进行色谱分离分析,对两种新型固定相的载体残余硅羟基屏蔽作用、疏水选择性、形状选择性和亲水性等多种性质进行了考察,证实两种新型固定相不但具备作为反相液相色谱(RPLC)的性能,同时也具备亲水相互作用色谱(HILIC)的性能。相较于C18固定相,C22-A和C22-A/U具有更好的形状选择性,双重嵌入的极性基团极大地降低了固定相硅羟基活性。将C22-A和C22-A/U两种固定相应用于几种碱性化合物、雌醇(酮)类化合物的分离,C22固定相在一定程度上解决了传统C18固定相上碱性化合物分离拖尾严重或保留不足的问题,成功实现了对雌醇(酮)类化合物的分离。  相似文献   

11.
以乙烯基酯树脂为单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,十二醇为制孔剂,经原位聚合法制备了聚(乙烯基酯树脂-乙二醇二甲基丙烯酸酯)整体柱.用γ-缩水甘油基氧丙基三甲氧基硅烷对整体柱进行衍生化处理后,整体柱上的环氧基团经0.25 mol/L H2SO4水解制成二醇柱.考察了pH值及缓冲液浓度对免疫球蛋白在该整体柱上的保留行为的影响,并对血浆中的免疫球蛋白进行了分离.同时在不同浓度的缓冲液中对鸡卵黄中免疫球蛋白进行了分离,并比较了间隔臂对鸡卵黄中免疫球蛋白的分离能力的影响.结果表明:含间隔臂的整体柱比不含间隔臂的整体柱对鸡卵黄免疫球蛋白有更好的洗脱分离能力.此外,还考察了该柱对免疫球蛋白的吸附能力,免疫球蛋白在该柱上的最大吸附量为35 μg/g.  相似文献   

12.
A novel porous polymeric monolithic column based on poly(high internal phase emulsion) methacrylate monolith was prepared and applied to fast separation of proteins. The block copolymer chemistry of high internal phase emulsions was used in the experiment. These unique properties, together with high porosity, good mechanical property, chemical modification of the surface make themselves superior in monolithic medium applications. Morphology of the monolithic material was studied by scanning electron microscopy. The stability of the emulsion and the load of hydroxyl groups–the active group of the monolithic column were investigated. Additionally, the capabilities of separation of this column in conjunction with high performance liquid chromatography (HPLC) were investigated. Immunoglobulin was separated from human plasma and chicken egg yolk with high resolution on the hydrophobic interaction chromatographic column in a short time. The effects of pH and concentration of mobile phase (buffer) on the elution of immunoglobulin were investigated. Moreover, fast separation of a two mode protein mixture (α‐amylase and lysozyme) on the monolith was achieved within 1.5 min at a velocity of 1445 cm·h?1. As a result, good separation was achieved, and stable low back pressure drop was ensured at high throughput elution with an even longer column.  相似文献   

13.
Vinyl ester‐based monoliths are proposed as a new group of stationary phase for CEC. The capillary monolithic columns were prepared by using two vinyl ester monomers, vinyl pivalate (VPV), and vinyl decanoate (VDC) by using ethylene dimethacrylate (EDMA) as the cross‐linking agent, and 2‐acrylamido‐2‐methylpropane sulfonic acid as the charge‐bearing monomer. The monoliths with different pore structures and permeabilities were obtained by varying the type and composition of the porogen mixture containing isoamyl alcohol and 1,4‐butanediol. The electrochromatographic separation of alkylbenzenes was successfully performed by using an acetonitrile/aqueous buffer system as the mobile phase in a CEC system. Vinyl ester monoliths with short alkyl chain length (i.e. poly(VPV‐co‐EDMA) exhibited better separation performance compared with the monolith with long alkyl chain length (i.e. poly(VDC‐co‐EDMA). In the case of VPV‐based monoliths, the theoretical plate numbers higher than 250 000 plates/m were achieved by using a porogen mixture containing 33% v/v of isoamyl alcohol. For both VDC and VPV‐based monoliths, the column efficiency was almost independent of the superficial velocity in the range of 2–12 cm/min.  相似文献   

14.
Nonreactive bisphenol A‐based poly(arylene ether triphenyl phosphine oxide/diphenyl sulfone) statistical copolymers and a poly(arylene ether triphenyl phosphine oxide) homopolymer, each having a number‐average molecular weight of about 20 kg/mol, were synthesized and solution‐blended with a commercial dimethacrylate vinyl ester resin. Free‐radical cured systems produced morphologies that were a function of both the amount of phosphonyl groups and the weight percentage of the copolymers. For example, highly hydrogen‐bonded poly(arylene ether phenyl phosphine oxide) homopolymer/vinyl ester resin mixtures were homogeneous in all proportions both before and after the formation of networks. Copolymers containing low amounts (≤30 mol %) of the phosphonyl groups displayed phase separation either before or during cure. The phase‐separated cured materials generally had phase‐inverted morphologies, such as a continuous thermoplastic copolymer phase and a particulate, discontinuous vinyl ester network phase, except for systems containing a very low copolymer content. The resin modified with a copolymer containing 30 mol % phosphine oxide comonomer showed improved fracture toughness, suggesting the importance of both phase separation and good adhesion between the thermoplastic polymer and the crosslinked vinyl ester filler phase. The results suggested that the copolymers with high amounts of phosphine oxide should be good candidates for interphase sizing materials between a vinyl ester matrix and high‐modulus carbon fibers for advanced composite systems. Copolymers with low amounts of phosphonyl groups can produce tough, vinyl ester‐reinforced plastics. The char yield increases with the concentration of bisphenol A poly(arylene ether phosphine oxide) content, suggesting enhanced fire resistance. The incorporation of thermoplastic copolymers sustains a high glass‐transition temperature but does not significantly affect the thermal degradation onset temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2409–2421, 2000  相似文献   

15.
Yang G  Bai L  Yan C  Gu Y  Ma J 《Talanta》2011,85(5):2666-2672
A strong cation-exchange poly(vinyl carboxylate-co-ethyleneglycol dimethacrylate) (poly(VC-co-EDMA)) monolithic column for high performance liquid chromatography (HPLC) has been prepared firstly by atom transfer radical polymerization (ATRP) without the expensive complexing ligand, in which vinyl carboxylate was used as the monomer, ethyleneglycol dimethacrylate as the cross linking agent, carbon tetrachloride as the initiator and ferrous chloride as the catalyst. Conditions of the polymerization have been studied and optimized. Morphology of monolithic materials was studied by scanning electronic microscopy. Chemical groups of the monolith were assayed by infrared spectra method and the pore size distribution was determined by a mercury porosimeter. Moreover, the monolith was modified to bear strong-cation exchange groups and tested on the separation of human immune globulin G (IgG) from human plasma in conjunction with HPLC. Good resolution was obtained in a short time (10 min) in the separation. The effects of pH and buffer concentration on the elution of IgG have been investigated. Moreover, frontal analytical method was used to get the IgG dynamic banding capacity of the monolith that was 3.0 mg g−1. Besides, the monolith was also used to separate lysozyme from egg white and separate the mixture of papain, snailase and IgG.  相似文献   

16.
A simple “one‐pot” approach for the preparation of a new vinyl‐functionalized organic–inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica‐based monolith, while 1‐hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed‐phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation‐exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m.  相似文献   

17.
A novel (3‐sulfopropyl methacrylate potassium)‐silica hybrid monolithic column for CEC has been prepared by a simple one‐pot approach based on efficient thiol‐ene click chemistry. In this process, the polycondensation of hydrolyzed alkoxysilanes and in situ click reaction of vinyl groups on 3‐sulfopropyl methacrylate potassium and thiol groups on the precondensed siloxanes simultaneously occurred in a pretreated capillary. Homogeneous monolithic matrix with large through‐pores tightly bonded to the inner wall of the capillary was shown by optical microscope and SEM. The minimum plate height of this hybrid monolithic column was determined as 3.9 μm for thiourea. Anilines, alkylbenzenes, and phenols were well separated on this hybrid monolithic column by CEC, which indicated typical reversed‐phase and cation‐exchange chromatographic retention mechanisms of the column.  相似文献   

18.
Three monomers, octakis (3‐mercaptopropyl) octasilsesquioxane, 1,2,4‐trivinylcyclohexane and isophytol were employed to synthesize a novel monolithic stationary phase via photo‐initiated thiol‐ene click polymerization for reversed‐phase liquid chromatography. Several factors such as porogenic system, reaction time and the molar ratio of functional groups were investigated in detail. The resulting poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column exhibited suitable permeability for fast separation and outstanding thermal stability. Five alkylbenzenes were employed to evaluate the ability of chromatographic separation of the resulting monolithic columns at different flow rates, and showed the highest column efficiencies of 90,200–93,100 N/m (corresponding to 10.4–10.6 μm of plate height) at a velocity of 0.41 mm/s. The baseline separations of five anilines and eight phenols further proved the applicability of poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column in the separation of small molecules.  相似文献   

19.
The primary objective of this study was to improve montmorillonite clay‐platelet separation in vinyl ester resin matrix by organically modifying the nanoclay platelet with a partially reactive onium salt. The reactive onium salt (ω‐undecylenyl amine hydrochloride) was synthesized from commercial ω‐undecylenyl alcohol through a series of synthetic conversions. Nonreactive onium salt (undecyl amine hydrochloride) was made from commercial undecyl amine. These salts were characterized with 1H and 13C NMR and Fourier transform infrared techniques. The relative amounts of exfoliated, intercalated, and as‐treated clay and the size of the clay particle aggregates depended significantly on the composition of clay and the processing conditions. When the clay was ion‐exchanged with a mixture of reactive and nonreactive onium salts, a partially exfoliated vinyl ester resin polymer nanocomposite was formulated. The addition of a comonomer styrene and high‐intensity ultrasonic mixing produced vinyl ester nanocomposite with the highest degree of clay‐platelet exfoliation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1310–1321, 2004  相似文献   

20.
A new type of polymethacrylate‐based monolithic column with chiral stationary phase was prepared for the enantioseparation of aromatic amino acids, namely d ,l ‐phenylalanine, d ,l ‐tyrosine, and d ,l ‐tryptophan by CEC. The monolithic column was prepared by in situ polymerization of butyl methacrylate (BMA), N‐methacryloyl‐l ‐histidine methyl ester (MAH), and ethylene dimethacrylate (EDMA) in the presence of porogens. The porogen mixture included DMF and phosphate buffer. MAH was used as a chiral selector. FTIR spectrum of the polymethacrylate‐based monolith showed that MAH was incorporated into the polymeric structure via in situ polymerization. Some experimental parameters including pH, concentration of the mobile phase, and MAH concentration with regard to the chiral CEC separation were investigated. Single enantiomers and enantiomer mixtures of the amino acids were separately injected into the monolithic column. It was observed that l ‐enantiomers of aromatic amino acids migrated before d ‐enantiomers. The reversal enantiomer migration order for tryptophan was observed upon changing of pH. Using the chiral monolithic column (100 μm id and 375 μm od), the best chiral separation was performed in 35:65% ACN/phosphate buffer (pH 8.0, 10 mM) with an applied voltage of 12 kV in CEC. SEM images showed that the chiral monolithic column has a continuous polymeric skeleton and large through‐pore structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号