首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cancer is a global issue and a serious threat to human health, one approach to treatment is starvation therapy. Recently, three-dimensional (3D) bioprinted tumor tissue models have been developed; however, whether 3D bioprinted models are good for in vitro study of starvation therapy is unclear. In this study, we studied the state of cells with serum-free medium in both 3D bioprinted scaffold and 2D cell cultures and found that 3D bioprinted cancer cells (3D cells) were more tolerant to serum starvation than 2D cells in terms of cell viability, cell proliferation, and M2 macrophage polarization. Moreover, the ratio of LC3II/I, an index of autophagy, increased much more in 3D cells, and 3D cells showed more autophagosomes than 2D cells after serum starvation, which indicated that the autophagy levels were higher in 3D cells. These results suggested that 3D cells are more tolerant to serum starvation than 2D cells, and autophagy may play an important role in this process.  相似文献   

2.
The title diacetylenic compound (D3) and its derivatives dibenzoate (D3B), dinitrobenzoate (D3mNB), ditosylate (D3PTS), and diurethane (D3PU) were synthesized and their solid-state reactivity examined under irradiation and thermal stimulation. D3, D3B, and D3PTS crystallized in reactive phases. The thermal and irradiation polymerization behavior of D3 and D3B was examined further by time-conversion curves.  相似文献   

3.
As macroscopic three dimensional (3D) architectures show increasing significance, much effort has been devoted to the hierarchical organization of 1D nanomaterials into serviceable macroscopic 3D assemblies. How to assemble 1D nanoscale building blocks into 3D hierarchical architectures is still a challenge. Herein we report a general strategy based on the use of ice as a template for assembling 1D nanostructures with high efficiency and good controllability. Free‐standing macroscopic 3D Ag nanowire (AgNW) assemblies with hierarchical binary‐network architectures are then fabricated from a 1D AgNW suspension for the first time. The microstructure of this 3D AgNW network endows it with electrical conductivity and allows it to be made into stretchable and foldable conductors with high electromechanical stability. These properties should make this kind of macroscopic 3D AgNW architecture and it composites suitable for electronic applications.  相似文献   

4.
The relative stabilities of nonisomers are investigated. Twenty-two species of nitrogen cage molecules N(2n) (N6 (D(3h)), N8 (Oh), N10 (D(5h)), N12 (D(6h)), N12 (D(3d)), N16 (D(4d)), N18 (D(3h)), N20 (Ih), N24 (D(3d)), N24 (D(4h)), N24 (D(6d)), N30 (D(3h)), N30 (D(5h)), N32 (D(4d)), N36 (D(3d)), N40 (D(4h)), N42 (D(3h)), N48 (D(4d)), N48 (D(3d)), N54 (D(3h)), N56 (D(4h)), and N60 (D(3d))), which are divided into four sets, have been studied in detail. The geometries and varieties of energies are examined extensively, and NBO analysis and AIM analysis are applied to investigate the bonding properties of the cage molecules. The introducing of the concept of "layer" can well assist in explaining why one nonisomer molecule is more stable than another one. The results show that the lengths of bonds, on both sides of which are five-membered rings (referred to as pentagons), are the shortest and the orbital energies are the lowest. The nonlocalized electron numbers of orbitals, on at least one side of which is a triangle, are the greatest. Pentagons play a major role in the stability of a cage molecule, and the three-membered rings (referred to as triangles) play the second one. The layers in nitrogen cage molecules also contribute to the relative stabilities.  相似文献   

5.
《Electroanalysis》2017,29(11):2444-2453
Heavy metals, being one of the most toxic and hazardous pollutants in natural water, are of great public health concern. Much effort is still being devoted to the optimization of the electroanalytical methods and devices, particularly for the development of novel electrode materials in order to enhance selectivity and sensitivity for the analysis of heavy metals. The ability of 3D‐printing to fabricate objects with unique structures and functions enables infinite possibilities for the creation of custom‐made electrochemical devices. Here, stainless steel 3D‐printed electrodes (3D‐steel) have been tested for individual and simultaneous square wave anodic stripping analysis of Pb and Cd in aqueous solution. Electrodeposition methods have also been employed to modify the steel electrode surface by coating with a thin gold film (3D−Au) or a bismuth film (3D−Bi) to enhance the analytical performance. All 3D‐printed electrodes (3D‐steel, 3D−Au and 3D−Bi) have been tested against a conventionally employed glassy carbon electrode (GC) for comparison. The surface modified electrodes (3D−Au and 3D−Bi) outperformed the GC electrode demonstrating higher sensitivity over the studied concentration ranges of 50–300 and 50–500 ppb for Pb and Cd, respectively. Owing to the bismuth property of binary alloys formation with heavy metals, 3D−Bi electrode displayed well‐defined, reproducible signals with relatively low detection limits of 3.53 and 9.35 ppb for Pb and Cd, respectively. The voltammetric behaviour of 3D−Bi electrode in simultaneous detection of Pb and Cd, as well as in individual detection of Pb in tap water was also monitored. Overall, 3D‐printed electrodes exhibited promising qualities for further investigation on a more customizable electrode design.  相似文献   

6.
A new method is described for the analysis of vitamin D and its metabolites utilizing thermospray (TSP) mass spectrometry as an on-line detector for high performance liquid chromatography. Ionization conditions were optimized for use with isocratic reversed phase chromatography. TSP mass spectrometry was employed in series with a UV absorbance detector to facilitate comparisons between the two methods of detection. Positive ion TSP mass spectra were recorded for vitamin D2, vitamin D3, 25-hydroxyvitamin D3 (25(OH)D3), 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3). The spectra contained protonated molecular ions, ammonium adduct ions and fragment ions due to the loss of one or more molecules of water. A comparison of quantitative precision was made by determining UV absorbance and TSP standard curves for vitamin D3 using two different methods: (1) External standard method with post-column (post UV detector) addition of ammonium acetate. (2) As (1) but using the method of internal standards with a closely eluting internal standard (vitamin D2). In each case the quantitative precision (correlation coefficient) for UV absorbance detection was superior owing to intrinsic instability of the TSP ion beam. A stable isotopically labelled internal standard was employed in the development of an assay for 1,25(OH)2D3. The assay was used to quantify in vitro enzymic conversion of 25(OH)D3 to 1,25(OH)2D3 in guinea pig and sheep renal mitochondrial incubations. TSP LC/MS was also applied to analysis of an extract of human blood plasma in which D3 and each of its principal metabolites were identified in a single analysis.  相似文献   

7.
Fabrication of complex three-dimensional microchannel systems in PDMS   总被引:1,自引:0,他引:1  
This paper describes a method for fabricating three-dimensional (3D) microfluidic channel systems in poly(dimethylsiloxane) (PDMS) with complex topologies and geometries that include a knot, a spiral channel, a "basketweave" of channels, a chaotic advective mixer, a system with "braided" channels, and a 3D grid of channels. Pseudo-3D channels, which are topologically equivalent to planar channels, are generated by bending corresponding planar channels in PDMS out of the plane into 3D shapes. True 3D channel systems are formed on the basis of the strategy of decomposing these complex networks into substructures that are planar or pseudo-3D. A methodology is developed that connects these planar and/or pseudo-3D structures to generate PDMS channel systems with the original 3D geometry. This technique of joining separate channel structures can also be used to create channel systems in PDMS over large areas by connecting features on different substrates. The channels can be used as templates to form 3D structures in other materials.  相似文献   

8.
We present the fabrication of a three-dimensional (3D) assembly of flower-like Au structures via the combination of 3D macroporous Au-coated microspheres and surface nanoarchitectures using electrodeposition of nanoplate Au structures. The 3D flower-like Au structures exhibit synergistically enhanced electrocatalytic activities regarding glucose oxidation and oxygen reduction compared to those of the individual 3D macroporous and nanoplate Au structures. The 3D flower-like Au structures can also be utilized as electroanalytical platforms retaining the combined advantages of both of the 3D macroporous and nanoplate Au structures.  相似文献   

9.
This paper describes a biomimetic strategy for the fabrication of 3D structures-including an electrically functional light detector-modeled on the folding of biological macromolecules into globular shapes. The process started by fabricating precursors to 3D, millimeter-sized structures using flexible polymer tapes. These tapes were patterned with metal features supporting liquid solder, crimped into strings of 3D corrugations, and attached to flat polymer tapes to generate linear 3D structures. Capillary interactions between droplets of molten solder on adjacent faces of the crimped tapes resulted in folding of the precursors into quasi-3D and truly 3D structures.  相似文献   

10.
2D halide perovskites have emerged as promising materials because of their stability and passivation effect in perovskite solar cells(PSCs).However,the introduction of bulky organic ammonium cations from 2D halide perovskites would decrease the device performance generally compared to the traditional 3D MAPbI_3.Incorporation of ultrathin 2D halide perovskite nanosheets(NSs) with 3D MAPbI_3 could address this issue.Herein,we re port a rationally designed PSCs with dimensional graded 3D/2D MAPbI_3/(PEA)2 PbI_4 heterojunction,in which 2D(PEA)2 PbI_4 NSs were synthesized and incorporated between 3D MAPbI_3 and hole-transporting layer.Besides the significantly improved stability,a notable increasement in power conversion efficiency(PCE) of 20% was obtained for the 3D/2D perovskite solar cells due to the favourable band alignment among(PEA)_2 PbI_4 NSs and the other components.The graded structure of MAPbI_3/(PEA)2 PbI_4 would upshift the energy level continuously,which enhances the hole extraction efficiency thus reduces the interface charge recombination,leading to the increasements of VOC from1.04 V to 1.07 V,Jsc from 21.81 mA/cm~2 to 23.15 mA/cm~2 and the fill factor from 67.89% to 74.78%,and therefore an overall PCE of 18.53%.  相似文献   

11.
A new three‐dimensional reference interaction site model (3D‐RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D‐FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D‐RISM program has a limitation on the number of parallelizations because of the limitations of the slab‐type 3D‐FFT. The volumetric 3D‐FFT relieves this limitation drastically. We tested the 3D‐RISM calculation on the large and fine calculation cell (20483 grid points) on 16,384 nodes, each having eight CPU cores. The new 3D‐RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D‐RISM program is effective to analyze the hydration properties of the large biomolecular systems. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
A series of analogs of 1 alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3 (1)] with alkyl substitutions in 26- and 27-positions have been tested for their activity 1) in competing with 1,25-(OH)2D3 for binding to chick intestinal cytosol receptor, 2) in ability for formation of multinucleated cells (MNC) with various osteoclastic cell characteristics from blast cells, and 3) in stimulating bone calcium mobilization in vitamin D-deficient rats. The relative potencies of 1,25-(OH)2D3, 1 alpha,25-dihydroxy-26,27-dimethylvitamin D3 (2), 1 alpha,25-dihydroxy-26,27-diethylvitamin D3 (3), and 1 alpha,25-dihydroxy-26,27-dipropylvitamin D3 (4) in competing for intestinal cytosolic binding were 1:1.1:0.25:0.05. The similar order of the abilities on formation of the multinucleated cells in the same series was observed. In a bone calcium mobilization test with vitamin D-deficient rats, 1 alpha,25-dihydroxy-26,27-dimethylvitamin D3 showed slightly less activity than 1,25-(OH)2D3 at 12 h after administration, but long lasting activity was observed during time course experiments. 1 alpha,25-Dihydroxy-26,27-diethylvitamin D3, and 1 alpha,25-dihydroxy-26,27-dipropylvitamin D3 were found to be much less active than 1,25-(OH)2D3 in a bone calcium mobilization test.  相似文献   

13.
Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.  相似文献   

14.
Five different dopamine D3 receptors (D3DARs) models were created considering some suggested binding modes for D3DAR antagonists reported in earlier computational studies. Different hypotheses are justified because of the lack of experimental information about the putative site of interaction and are also due to the variability in scaffolds and size of D3DAR ligands. In this study 114 potent and selective D3DAR antagonists or partial agonists are used as key experimental information to discriminate the most reliable receptor model and to build a docking based 3D quantitative structure-activity relationship model able to indicate the ligand properties and the residues important for activity. The ability of this D3DAR model to discriminate the binding mode of different classes of ligands, showing a good quantitative correlation with their activity, encourages us to use it for screening novel lead compounds.  相似文献   

15.
Despite the remarkable progress in perovskite solar cells (PSCs), their instability and rapid degradation over time still restrict their commercialization. A 2D capping layer has been proved to overcome the stability issues; however, an in-depth understanding of the complex degradation processes over a prolonged time at PSC interfaces is crucial for improving their stability. In the current work, we investigated the stability of a triple cation 3D ([(FA0.83MA0.17)Cs0.05]Pb(I0.83Br0.17)3) and 2D/3D PSC fabricated by a layer-by-layer deposition technique (PEAI-based 2D layer over triple cation 3D perovskite) using a state-of-art characterization technique: electrochemical impedance spectroscopy (EIS). A long-term stability test over 24 months was performed on the 3D and 2D/3D PSCs with an initial PCE of 18.87% and 20.21%, respectively, to suggest a more practical scenario. The current-voltage (J-V) and EIS results showed degradation in both the solar cell types; however, a slower degradation rate was observed in 2D/3D PSCs. Finally, the quantitative analysis of the key EIS parameters affected by the degradation in 3D and 2D/3D PSCs were discussed.  相似文献   

16.
Four novel In3+ and Cd2+ based 1D coordination compounds constructed by double betaine ligands were synthesized and characterized structurally and optically. They assemble into 3D supra‐molecular architectures via different stacking or entanglement of 1D zigzag shaped chains, in which C–H ··· Cl and C–H ··· O hydrogen bonding interactions play a dramatic impact. Compound 1 displays a 1D + 1D → 3D four‐connect lvt net with 42 · 84 topology. Compound 2 assembles into a 3D architecture by inclined stacking of the adjacent zigzag chains. Compound 3 displays a 2D + 2D → 3D inclined polycatenation based on the resulting 2D (6, 3) layers that constructed by 1D chains. Compound 4 displays a 3D supra‐molecular architecture based on 1D chains, which were connected via the hydrogen bonding. Meanwhile, four compounds emit in the range of visible region owing to the intra‐ligand π*→π and/or π*→n electron transition induced florescence.  相似文献   

17.
Perovskite solar cells (PSCs) fabricated with two-dimensional (2D) halide and 2D-3D mixed-halide materials are remarkable for their optoelectronic properties. The 2D perovskite structures are extremely stable but show limited charge transport and large bandgap for solar cell applications. To overcome these challenges, multidimensional 2D-3D perovskite materials are used to maintain simultaneously, a long-term stability, and high performance. In this review, we discuss the recent progress and the advantages of 2D and 2D-3D perovskite materials as absorber for solar cell applications. First, we discuss the structure and the unique properties of 2D and multidimensional 2D-3D perovskites materials. Second, the stability of 2D and 2D-3D mixed perovskites and the perspects of PSCs are hashed out.  相似文献   

18.
3D打印(亦称增材制造)技术因其独特的材料成型优势,在组织工程、航空航天、汽车制造、以及电子工业等众多领域显示出巨大的应用潜力。然而,在实际生物医学应用中,3D打印生物器件和组织器官除了要求具有复杂的结构和优异的生物学性能外,其打印结构的表面性质也需满足某些特定的要求,如3D打印组织骨架和器官必须具有生物相容性、抗菌性及细胞粘附性等。因此,将3D打印与传统表面修饰技术相结合,在不改变材料三维结构的基础上调控其表面生物化学性质,从而赋予3D打印生物骨架器官多功能化,可实现更为广泛的应用。本文以3D打印生物骨架及器官的表面修饰为主要内容对就近年来3D打印生物医用材料的最新研究进展进行了综述。  相似文献   

19.
Li RY  Wang XY  Liu T  Xu HB  Zhao F  Wang ZM  Gao S 《Inorganic chemistry》2008,47(18):8134-8142
By utilizing suitable coligand endi (1,2-(tetrazole-1-yl)ethane)) with variable conformations, we synthesized three new azido-bridged Co(2+) compounds with molecular formulas Co(endi)(N3)2 (1, 3) and Co(endi)2(N3)2 (2) by tuning the stoichiometric ratio of ligand/metal and the concentration of the solution. All of the compounds have been characterized structurally and magnetically. In all three structures, the azide ions use the end-to-end mode to link the Co(2+) centers to the 1D chain (1) and 2D (4,4) layers (2 and 3). The endi coligands adopt a trans conformation in compound 1 and a gauche conformation in compounds 2 and 3. Linked by bridging endi, the 1D chains in compound 1 and 2D layers in compound 3 are extended, resulting in the final 2D layer for compound 1 and the 3D network for compound 3, whereas in compound 2, the endi acts as only a terminal ligand to separate the 2D layers. Compound 1 consists of dual end-to-end azido-bridged 1D Co(2+) chains that are linked by trans endi into a 2D layer and are further extended to a 3D framework through H bonds. Compound 2 is a 2D (4,4) layer that is connected by end-to-end azido ions. The gauche endi ligands act as terminal ligands to separate the neighboring layers thoroughly. Compound 3 has a (4,4) 2D layer that is similar to that of compound 2, and these layers are further extended to a 3D network through gauche endi. The magnetic investigation shows that compound 3 is antiferromagnetically coupled and compound 2 is a weak ferromagnet with a critical temperature of 22 K, which is quite high compared with that of the previously reported 2D azido-bridged Co(2+) compounds.  相似文献   

20.
A following new interpretation of apparent induction period is proposed considering the experimental results obtained: octamethylcyclotetrasiloxane (D4) is activated by the reaction with acid to generate an activated derivative (A4). A4 reacts with D4 to generate A8, an active species containing eight dimethylsiloxane units. A8 backbites to generate mostly A4 and D4, which causes retardation in polymerization, but occasionally to form A3 and D5. A3 is highly reactive, and when the concentration of A3 exceeds a certain limit, much Ai where i is large enough is formed and promotes fast growth of chain at the interfacial area due to high concentration of D4. The interpretation assumes that A3 accelerates growth of chain faster than other species, and that A8 tends to backbite rather than grow. The interpretation is supported by the experimental results of polymerization conducted with D4 and D3, or D5 and D3 charged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号