首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.  相似文献   

2.
A new global potential-energy surface for the ground electronic state of HO(2)(X(2)A(")) has been developed by three-dimensional cubic spline interpolation of more than 15 000 ab initio points, which were calculated at the multireference configuration-interaction level with Davidson correction using the augmented correlation-consistent polarized valence quadruple zeta basis set. Low-lying vibrational states were obtained in this new potential using the Lanczos method and assigned. The calculated vibrational frequencies are in much better agreement with the available experimental band origins than those obtained from a previous potential. In addition, rate constants for the H+O(2) <--> O + OH reactions were obtained using a wave-packet-based statistical model. Reasonably good agreement with experimental data was obtained. These results demonstrate the accuracy of the potential.  相似文献   

3.
In this work, we have extended our previous high resolution study of the vacuum ultraviolet emission spectrum of the D2 molecule [M. Roudjane, et al. J. Chem. Phys. 125, 214305 (2006)] up to 124.2 nm in order to investigate the B' 1Sigmau+-->X 1Sigmag+ band system. The analysis of the spectrum has been carried out by means of a complex spectrum visual identification code IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656, (1993)] and supported by theoretical calculations using ab initio data [L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 212, 208 (2002); L. Wolniewicz and G. Staszewska, 220, 45 (2003)] which provided level energies and transition probabilities. More than 1480 new emission lines have been observed and 109 bands belonging to the B' 1Sigmau+-->X 1Sigmag+ system have been identified between 84.1 and 121.6 nm. Except for the upsilon'-0 bands that were reported in absorption [I. Dabrowski and G. Herzberg, Can. J. Phys. 52, 1110 (1974)], all the upsilon'-upsilon" bands are reported here for the first time. The analysis led to the determination of 111 rovibronic energy levels in the B' 1Sigmau+ state, of which 31 with higher rotational numbers J are new. Observed perturbations are accounted for through a set of coupled equations involving the four excited electronic states B 1Sigmau+, B' 1Sigmau+, C 1Piu, and D 1Piu and including nonadiabatic couplings. The solution of this set provides the percent contribution of these four states to each of the observed rovibronic level.  相似文献   

4.
Five-dimensional nonadiabatic quantum dynamics studies have been carried out on two new potential energy surfaces of S(2)((1)A(')) and T(7)((3)A(")) states for the title oxygen molecules collision with coplanar configurations, along with the spin-orbit coupling between them. The ab initio calculations are based on complete active state second-order perturbation theory with the 6-31+G(d) basis set. The calculated spin-orbit induced transition probability as a function of collision energy is found to be very small for this energy pooling reaction. The rate constant obtained from a uniform J-shifting approach is compared with the existing theoretical and experimental data, and the spin-orbit effect is also discussed in this electronic energy-transfer process.  相似文献   

5.
We study the hydrogen abstraction reaction from pentane by chlorine radicals using four different experimental approaches. We use two different solvents (CH2Cl2 and CCl4) and two different chlorine atom sources (photodissociation of dissolved Cl2 and two-photon photolysis of the solvent) to investigate their effects on the recombination and reactivity of the chlorine radical. All four experimental schemes involve direct probing of the transient chlorine population via a charge transfer transition with a solvent molecule. In one of the four approaches, photolysis of Cl2 in dichloromethane, we also monitor the nascent reaction products (HCl) by transient vibrational spectroscopy. Probing both the reactants and the products provides a comprehensive view of this bimolecular reaction in solution. Between one-third and two-thirds of the chlorine radicals that initially escape the solvent cage undergo diffusive geminate recombination with their partner radical (either another chlorine atom or the solvent radical). The rest react with pentane with the bimolecular rate constants k(bi) = (9.5 +/- 0.7) x 10(9) M(-1) s(-1) in CH2Cl2 and k(bi) = (7.4 +/- 2) x 10(9) M(-1) s(-1) in CCl4. The recombination yield phi(rec) depends on both the chlorine atom precursor and the solvent and is larger in the more viscous carbon tetrachloride solutions. The bimolecular reaction rate k(bi) depends only on the solvent and is consistent with a nearly diffusion-limited reaction.  相似文献   

6.
Selenium and arsenic reactions believed to take place in the flue gases of coal combustion facilities were investigated. Prior theoretical work involving various As and Se species was completed using DFT and a broad range of ab initio methods. Building upon that work, the present study is a determination of the kinetic and thermodynamic parameters of the reactions, Se + O2 --> SeO + O and As + HCl --> AsCl + H at the CCSD/RCEP28VDZ and QCISD(T)/6-311++G(3df,3pd) levels of theory, respectively. Transition state theory was used in determining the kinetic rate constants along with collision theory as a means of comparison. The calculated K(eq) values are compared to experimental data, where available.  相似文献   

7.
The photodissociation spectra of CS(2)(+) ions via B(2)Sigma(u)(+) and C(2)Sigma(g)(+) electronic states have been studied by using two-photon excitation, where the parent CS(2)(+) ions were prepared by [3 + 1] REMPI (resonance-enhanced multiphoton ionization) at 483.2 nm from the jet-cooled CS(2) molecules. The [1 + 1] photodissociation spectrum of CS(2)(+) via the B(2)Sigma(u)(+)(upsilon(1)upsilon(2)0) <-- X(2)Pi(g,3/2)(000) transition was obtained by scanning the dissociation laser in the wavelength range of 270-285 nm and detecting the signal of both S(+) and CS(+). The [1 + 1'] photodissociation spectra of CS(2)(+) were obtained by fixing the first dissociation laser at 281.94 or 277.15 nm to excite the B(2)Sigma(u)(+) (000 or 100) <-- X(2)Pi(g,3/2)(000) transitions and scanning the second dissociation laser in the range of 606-763 nm to excite C(2)Sigma(g)(+)(upsilon(1)upsilon(2)0) <-- B(2)Sigma(u)(+)(000,100) transitions. New spectroscopic constants of nu(1) = 666.2 +/- 2.5 cm(-1), nu(2) = 363.2 +/- 1.9 cm(-1), chi(11) = -5.5 +/- 0.1 cm(-1), chi(22) = 1.6 +/- 0.1 cm(-1), chi(12) = -8.6 +/- 0.2 cm(-1), and k(122) = 44.9 +/- 2.5 cm(-1) (Fermi resonance constant) for the C(2)Sigma(g)(+) state are deduced from the [1 + 1'] photodissociation spectra. On the basis of the [1 + 1] and [1 + 1'] photodissociation spectra, the wavelength and level dependence of the product branching ratios CS(+)/S(+) has been found and the dissociation dynamics of CS(2)(+) ions via B(2)Sigma(u)(+) and C(2)Sigma(g)(+) electronic states are discussed.  相似文献   

8.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.  相似文献   

9.
The interaction of O2 with the doped icosahedral X@Al12 (X = Al?, P+, C, Si) clusters with 40 valence electrons were investigated using density functional theory methods. A different behavior exhibited between Al13? and X@Al12 (X = P+, C, Si) when they interact with O2. The dissociation of O2 on Al13? is strongly dependent on spin state of oxygen molecule. But X@Al12 (X = P+, C, and Si) is not the case. The transform of spin moment from O2 to Al13? is much faster. Small molecularly binding energy and relatively high energy barrier show that these clusters are all reluctant reacts with the ground state O2. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

10.
The accumulation of radiation-induced defects and of H-atoms on γ-irradiation of a B2O3 + H2O system, at 77K, at different concentrations of water molecules have been investigated by ESR. The radiation-chemical yields of paramagnetic centres and of H-atoms have been determined from appropriate kinetic curves. It has been established that increasing the concentration of water molecules in the system results in a lowering of the yield of paramagnetic centres and an increase in the H-atom concentration. On the basis of the results obtained a mechanism has been suggested for heterogeneous radiation processes in this system at 77 K.  相似文献   

11.
Oxidation reaction of the ground state Si atom was studied by using a crossed molecular beam technique at 13.0 kJ/mol of collision energy. The Si atomic beam was generated by laser vaporization and crossed with the oxygen molecular beam at right angle. Products at the crossing region were detected by the laser-induced fluorescence (LIF). The LIF of SiO(A 1 Pi-X 1 Sigma+) was used to determine the vibrational state distribution of the electronic ground state, SiO(X 1 Sigma+). The determined distribution was inverted with the maximum population at v"=4, and in good agreement with the recent quasiclassical trajectory calculation on the singlet potential energy surface. The agreement suggested that an abstraction mechanism is dominant at the collision energy studied here. One of the counterproducts, O(3PJ), was also observed by the vacuum ultraviolet LIF and the distribution of the spin-orbit levels were determined. The formation of O(3PJ) was consistent with the significant population of v"=7 and 8 states of SiO, which could be explained by the presence of the triplet product channel with higher exothermicity.  相似文献   

12.
The proton transfer reaction between OH- and C2H2, the sole reactive process observed over the collision energy range from 0.37 to 1.40 eV, has been studied using the crossed beam technique and density-functional theory (DFT) calculations. The center of mass flux distributions of the product C2H- ions at three different energies are highly asymmetric, characteristic of a direct process occurring on a time scale much less than a rotational period of any transient intermediate. The maxima in the flux distributions correspond to product velocities and directions close to those of the precursor acetylene reactants. The reaction quantitatively transforms the entire exothermicity into internal excitation of the products, consistent with an energy release motif in which the proton is transferred early, in a configuration in which the forming bond is extended. This picture is supported by DFT calculations showing that the first electrostatically bound intermediate on the reaction pathway is the productlike C2H- H2O species. Most of the incremental translational energy in the two higher collision energy experiments appears in product translational energy, and provides an example of induced repulsive energy release characteristic of the heavy+light-heavy mass combination.  相似文献   

13.
The C((3)P) + OH(X (2)Pi) --> CO(X (1)Sigma(g)(+)) + H((2)S) reaction has been investigated by ab initio electronic structure calculations of the X(2)A' state based on the multireference (MR) internally contracted single and double configuration interaction (SDCI) method plus Davidson correction (+Q) using Dunning aug-cc-pVQZ basis sets. In particular, the multireference space is taken to be a complete active space (CAS). Improvement over previously proposed potential energy surfaces for HCO/COH is obtained in the sense that present surface describes also the potential part where the CO interatomic distance is large. A large number of geometries (around 2000) have been calculated and analytically fitted using the reproducing kernel Hilbert space (RKHS) method of Ho and Rabitz both for the two-body and three-body terms following the many-body decomposition of the total electronic energies. Results show that the global reaction is highly exothermic ( approximately 6.4 eV) and barrierless (relative to the reactant channel), while five potential barriers are located on this surface. The three minima and five saddle points observed are characterized and found to be in good agreement with previous work. The three minima correspond to the formation of HCO and COH complexes and to the CO + H products, with the COH complex being a metastable minimum relative to the product channel. The five saddle points correspond to potential barriers for both the dissociation/formation of HCO and COH into/from CO + H, to barriers for the isomerization of HCO into COH and to barriers for the inversion of HCO and COH through their respective linear configuration.  相似文献   

14.
The A2Π - X2Σ+ electronic transition of MgH has been studied by the laser excitation spectroscopy. Some new transitions have been observed for the first time. Rotational parameters of the X and A state have been derived and compared with other experimental values.  相似文献   

15.
The boron-rich boron sub-oxide rhombohedral B6O considered in B12O2 full formulation has a large O-O spacing of ~3 Å and a central vacant position that can receive interstitial atoms X, forming a central O-X-O alignment in the dodecaboron cage as observed in well-known triatomic B12 compounds as B12{C-C-C}, B12{N-B-N}, etc. Plane wave density functional theory (DFT) based calculations of unrestricted geometry relaxation of B12{O-X-O}, X = B, C, N, and O let one identify new ternary sub-oxides, all found cohesive while showing different d(X-O) distances ranging from d(B-O) = 1.95 Å down to d(O-O) = 1.73 Å with intermediate d(C-O) = 1.88 Å. The different magnitudes were assigned to the chemical affinities of X-inserts versus host oxygen with the increasing development of X-O bonding along the series with larger cohesive B12{O-O-O}. From the atom projected charge density, B presents none, while significant magnitudes are shown on C and N, the latter developing bonding with terminal oxygen atoms especially N. The presence of unpaired valence electrons leaves nonbonding charge density on X = C, N interstitial compounds, which, besides the relative isolation of the central C and N lead to the onset of magnetic moments: M(C) = 1.9 μB, and M(N) = 1 μB in a ferromagnetic ground state. Atom-resolved assessments are provided with the magnetic charge density and electron localization function electron localization function (ELF) projections on one hand and the site and spin projected density of states and the chemical bonding based on the overlap integral Sij within the COOP criterion, on the other hand.  相似文献   

16.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

17.
采用等温蒸发平衡法研究了四元体系K2B4O7-Na2B4O7-Li2B4O7-H2O15℃时的介稳相平衡及平衡液相的物化性质(密度,粘度,电导率,折光率,pH)。根据实验数据绘制了相图,相图中有一个共饱点E,三条单变度曲线E3F,E2F,E1F;三个平衡固相分别为:K2B4O7•4H2O,Na2B4O7•10H2O和Li2B2O4•16H2O;硼酸钾具有最大溶解度,硼酸钠具有最小溶解度。同时,根据试验数据绘制了组成-物化性质关系图,从图可见溶液的密度,粘度和折光率均随着溶液浓度的增大而逐渐增大,在共饱和点F处达到最大值,而溶液的pH值和电导率却随着溶液浓度的增大呈总体下降的趋势。  相似文献   

18.
19.
In this paper we report on the kinetics of hydrogen abstraction for the OH + alkene reaction class, using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approaches. Parameters for the RC-TST were derived from theoretical calculations using a set of 15 reactions representing the hydrogen abstractions from the terminal and nonterminal carbon sites of the double bond of alkene compounds. Both the RC-TST/LER, where only reaction energy is needed at either density functional theory BH&HLYP or semiempirical AM1 levels, and RC-TST/BHG, where no additional information is required, are found to be promising methods for predicting rate constants for a large number of reactions in this reaction class. Detailed error analyses show that, when compared to explicit theoretical calculations, the averaged systematic errors in the calculated rate constants using both the RC-TST/LER and RC-TST/BHG methods are less than 25% in the temperature range 300-3000 K. The estimated rate constants using these approaches are in good agreement with available data in the literature.  相似文献   

20.
Laser-induced fluorescence spectroscopy via excitation of the A2pi(3/2) <-- X2pi(3/2) (2,0) band at 445 nm was used to monitor IO in the presence of NO2 following its generation in the reactions O(3P) + CF3I and O(3P) + I2. Both photolysis of O3 (248 nm) and NO2 (351 nm) were used to initiate the production of IO. The rate coefficients for the thermolecular reaction IO + NO2 + M --> IONO2 + M were measured in air, N2, and O2 over the range P = 18-760 Torr, covering typical tropospheric conditions, and were found to be in the falloff region. No dependence of k1 upon bath gas identity was observed, and in general, the results are in good agreement with recent determinations. Using a Troe broadening factor of F(B) = 0.4, the falloff parameters k0(1) = (9.5 +/- 1.6) x 10(-31) cm6 molecule(-2) s(-1) and k(infinity)(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) were determined at 294 K. The temporal profile of IO at elevated temperatures was used to investigate the thermal stability of the product, IONO2, but no evidence was observed for the regeneration of IO, consistent with recent calculations for the IO-NO2 bond strength being approximately 100 kJ mol(-1). Previous modeling studies of iodine chemistry in the marine boundary layer that utilize values of k1 measured in N2 are hence validated by these results conducted in air. The rate coefficient for the reaction O(3P) + NO2 --> O2 + NO at 294 K and in 100 Torr of air was determined to be k2 = (9.3 +/- 0.9) x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recommended values. All uncertainties are quoted at the 95% confidence limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号