首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One stone, two birds: Here, we have developed a simple and efficient method for the incorporation of multiple unnatural amino acids in a single protein. This single protein exhibited two different novel functionalities acquired from the genetically incorporated unnatural amino acids, which is an interesting and not an inherent property of the protein.  相似文献   

2.
We describe an approach to achieve unnatural amino acid incorporation into channels and receptors expressed in mammalian cells. We show that microelectroporation provides a general method to deliver DNA, mRNA, and tRNA simultaneously. In both CHO cells and cultured neurons, microelectroporation efficiently delivers an in vitro transcribed, serine amber suppressor tRNA, leading to nonsense suppression in a mutant EGFP gene. In CHO cells, both natural and unnatural amino acids chemically appended to a suppressor tRNA are site specifically incorporated into the nicotinic acetylcholine receptor (nAChR). Electrophysiology confirms the expected functional consequences of the unnatural residue. The microelectroporation strategy described here is more general, less tedious, and less damaging to mammalian neuronal and nonneuronal cells than previous approaches to nonsense suppression in small cells and provides the first example of unnatural amino acid incorporation in mammalian cells using chemically aminoacylated tRNA.  相似文献   

3.
We report the discovery of a simple system through which variant pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pairs created in Escherichia coli can be used to expand the genetic code of Saccharomyces cerevisiae. In the process we have solved the key challenges of producing a functional tRNA(CUA Pyl) in yeast and discovered a pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pair that is orthogonal in yeast. Using our approach we have incorporated an alkyne-containing amino acid for click chemistry, an important post-translationally modified amino acid and one of its analogs, a photocaged amino acid and a photo-cross-linking amino acid into proteins in yeast. Extensions of our approach will allow the growing list of useful amino acids that have been incorporated in E. coli with variant pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pairs to be site-specifically incorporated into proteins in yeast.  相似文献   

4.
5.
We report a general method to display peptide-containing unnatural amino acids on filamentous M13 phage. Five distinct unnatural amino acids were site-specifically incorporated at the N-terminal of the M13 phage minor coat protein pIII. Phages that contain p-azidophenylalanine can undergo a highly specific azide-alkyne [3 + 2] cycloaddition reaction with an alkyne-derivatized fluorophore. The generalization of phage display to include unnatural amino acids should significantly increase the scope of phage display technology.  相似文献   

6.
A route to spiroisoxazolinoproline-based amino acid derivatives is reported in which exo-methyleneprolinate 4 (tert-butyl ester) reacts as a dipolarophile with nitrile oxides to generate spiroisoxazolinoprolinates 7/10/11 in good yields (70-75%) and with ca. 1:4 cis:trans diastereoselectivity. tert-Butyl spiroisoxazolinoprolinates were separable by column chromatography and amenable to scale-up leading to single diastereoisomers of N-Boc and N-Fmoc protected spiroisoxazolinoproline amino acids.  相似文献   

7.
The procedures for the synthesis of various α-alkenyl and alkyne amino acids were systematically optimized in light of enhancing atom economy, reducing hazardous reagent usage, and simplifying workup. By starting with Boc-Pro-OH and coupling with EDCI/DMAP followed by alkylation, chiral auxiliary was synthesized with high yield and enantioselectivity. For alkylation of the chiral complex, tBuONa was found and proved by quantitative calculation to be superior to tBuOK in generating more nucleophilic enolate salt, thereby can significantly enhance yield under room temperature. Final Fmoc protection was also dramatically facilitated in one-pot sequential manner by adding EDTA-2Na as the nickel chelator. Synthesis of α-bisalkenyl amino acid was also accomplished by achiral complex approach with high yield and efficacy. Accordingly, five most commonly used N-Fmoc protected α-alkenyl and alkynyl amino acids were synthesized and characterized.  相似文献   

8.
Alkylation of the benzophenone imine of glycine Wang resin with α,ω-dihaloalkanes yielded valuable reactive intermediates. These racemic ω-chloro or ω-bromo intermediates were converted to α-amino acids containing diverse side-chain functionalities (e.g. ω-chlorides, nitriles, and thioethers), proline and its ring homologs, and 1-aminocycloalkanecarboxylic acid derivatives.  相似文献   

9.
非天然氨基酸定点突变成功地应用在腺苷酸激酶上来研究其作用机理。一个苯丙氨酸的类似物和若干脯氨酸的类似物专一性地接入进腺苷酸激酶。对突变物的稳态动力学研究表明: 酪氨酸-95的芳香性在腺苷酸激酶的催化作用上不起非常重要的作用; 腺苷酸激酶能容耐脯氨酸-17的环变化为大的柔韧的环, 但却不能容耐小的刚硬的四元环。  相似文献   

10.
A series of allenic ketones react with a glyoxylate-derived imine in the presence of MgBr2 through an aza-Morita-Baylis-Hillman (MBH) reaction. The isolation of a variety of unnatural amino acids with unique allene-containing functional groups provides a conceptually new application of the aza-MBH. The reaction scope and preliminary mechanistic investigations are discussed.  相似文献   

11.
Bispecific antibodies were constructed using genetically encoded unnatural amino acids with orthogonal chemical reactivity. A two-step process afforded homogeneous products in excellent yield. Using this approach, we synthesized an anti-HER2/anti-CD3 bispecific antibody, which efficiently cross-linked HER2+ cells and CD3+ cells. In vitro effector-cell mediated cytotoxicity was observed at picomolar concentrations.  相似文献   

12.
13.
A general approach was developed for the regio- and chemoselective covalent immobilization of soluble proteins on glass surfaces through an unnatural amino acid created by post-translationally modifying the cysteine residue in a CaaX recognition motif with functional groups suitable for "click" chemistry or a Staudinger ligation. Farnesyl diphosphate analogues bearing omega-azide or omega-alkyne moieties were attached to the cysteine residue in Cys-Val-Ile-Ala motifs at the C-termini of engineered versions of green fluorescent protein (GFP) and glutathione S-transferase (GST) by protein farnesyltransferase. The derivatized proteins were attached to glass slides bearing linkers containing azide ("click" chemistry) or phosphine (Staudinger ligation) groups. "Click"-immobilized proteins were detected by fluorescently labeled antibodies and remained attached to the slide through two cycles of stripping under stringent conditions at 80 degrees C. GFP immobilized by a Staudinger ligation was detected by directly imagining the GFP fluorophore over a period of 6 days. These methods for covalent immobilization of proteins should be generally applicable. CaaX recognition motifs can easily be appended to the C-terminus of a cloned protein by a simple modification of the corresponding gene, and virtually any soluble protein or peptide bearing a CaaX motif is a substrate for protein farnesyltransferase.  相似文献   

14.
Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes.As a complementary approach to studying native enzymes or making synthetic models,biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions.However,most biosynthetic models are restricted to natural amino acids.To overcome this limitation,incorporating unnatural amino acids into the biosynthetic models has shown promises.In this review,we summarize first synthetic,semisynthetic and biological methods of incorporates unnatural amino acids(UAAs)into proteins,followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids,such as reduction potentials of azurin,O_2 reduction rates and percentages of product formation of HCO models in Mb,the rate of radical transport in ribonucleotide reductase(RNR)and the proton and electron transfer pathways in photosystemⅡ(PSⅡ).We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins,such as Metl21 in azurin,Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO,Tyr122,356,730 and 731 in RNR and TyrZ in PSⅡ.These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms,making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes.  相似文献   

15.
《Tetrahedron: Asymmetry》1998,9(18):3319-3324
The synthesis of a bipyridyl amino acid, 2-amino-3-(4′-methyl-2,2′-bipyridin-4-yl) propanoic acid, is described. A short three step synthesis from commercially available 4,4′-dimethyl-2,2′-bipyridine provides the amino acid in 65% enantiomeric excess (ee). An enzyme-mediated chiral resolution increases the ee to 95% in two additional steps. The amino acid was incorporated into a 22 amino acid peptide composed predominantly of alanine. The peptide was found to be 88% α-helical in aqueous solution at 1°C by circular dichroism (CD) spectropolarimetry, indicating a high helical propensity for this amino acid. This amino acid can provide a means to incorporate a metal into structure-forming peptides.  相似文献   

16.
The ability to site-specifically incorporate a diverse set of unnatural amino acids (>30) into proteins and quickly add new structures of interest has recently changed our approach to protein use and study. One important question yet unaddressed with unnatural amino acids (UAAs) is whether they can improve the activity of an enzyme beyond that available from the natural 20 amino acids. Herein, we report the >30-fold improvement of prodrug activator nitroreductase activity with an UAA over that of the native active site and a >2.3-fold improvement over the best possible natural amino acid. Because immense structural and electrostatic diversity at a single location can be sampled very quickly, UAAs can be implemented to improve enzyme active sites and tune a site to multiple substrates.  相似文献   

17.
Sabat M  Johnson CR 《Organic letters》2000,2(8):1089-1092
[formula: see text] (R and S)-alpha-Amino alcohols and alpha-amino acids, including 4-methoxyhomophenylalanine, with a variety of unnatural side chains have been synthesized via palladium-catalyzed cross-coupling Suzuki reactions. The key building blocks 1 and 2, synthesized from the common achiral precursor 2-butene-1,4-diol, were made enantiopure utilizing a Pseudomonas cepacia lipase-catalyzed kinetic resolution. The optimal conditions for the Suzuki cross-coupling and the subsequent oxidations of the resultant alpha-amino alcohols are described.  相似文献   

18.
This Communication describes the chemo- and site-selective coupling of cell type-specific targeting peptides to a virus capsid containing aminophenylalanine residues.  相似文献   

19.
Reacting imine derivatives of resin-bound amino acids with alpha,omega-dihaloalkanes provides highly versatile intermediates to racemic alpha,alpha-disubstituted amino acids with a wide variety of side-chain functionality. Two strategies were developed to convert the intermediate omega-chloro or omega-bromo derivatives to the desired products. Together, they allow the creation of amino acids with diverse functionalities (omega-chlorides, nitriles, azides, acetates, thioacetates, thioethers, secondary and tertiary aliphatic amines, and anilines) placed at varying chain lengths (2-5) from the alpha-center of the amino acid.  相似文献   

20.
Proteins contain amino acid residues essential to structure and function. Ribosomal protein synthesis is typically limited to the 20 amino acids of the genetic code, but posttranslational chemical modifications can greatly expand the diversity of side chain functionalities. In this investigation, a natural aromatic residue in the lock-and-key joint at the subunit interface of the dimeric glutathione transferase P1-1 was replaced by an S-alkylcysteine residue to give a functional enzyme. Introduction of Cys in the key position inactivates the enzyme, but subsequent alkylation of this residue enhances the catalytic efficiency up to 27,000-fold. Combinatorial modification of Cys by a mixture of reagents facilitated identification of an n-butyl group as the most efficient activator. Alkylation also enhanced binding affinity for active-site ligands and stabilized the enzyme against chemical denaturation and thermal inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号