首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment, removal and recovery of lead (3 mg/L) from battery industry wastewaters have been investigated utilising a chemical precipitation process with soluble starch xanthate (SX) at pH 5-6. A reactant ratio, i.e., SX/Pb(II) = 6 mol/mol, a reaction time of 15 min., the addition of 15 mg/L of a cationic polyelectrolyte and a final filtration gave residual lead concentrations in the liquid phase less than 0.2 mg/L, well below the maximum limit established by the EU Directive. Lead was extracted from the obtained sludge by oxidation with sodium hypochlorite or hydrogen peroxide solutions. The amounts of oxidant needed were quantified as 13.5 mol NaClO/mol Pb and one order of magnitude larger, for H2O2, the latter due to the competitive disproportion reaction of the oxidant. The metal extraction was quantitative using sodium hypochlorite; when hydrogen peroxide was used, the formation of insoluble PbSO4 (Anglesite) gave a 80% metal extraction. In both cases molar ratios between sulphate and lead ions in the extracted solutions were in the range 2.1-2.2, in agreement with the stoichiometries of the reactions. Lead can be quantitatively recovered from the extracted (NaClO) solutions, for reuse, after a chemical precipitation process with 1M NaOH at pH 9-9.5, in the form of hydrocerussite [Pb3(CO3)2(OH)2].  相似文献   

2.
Currently, the smelting activities of lead and zinc are the loudest sources of local pollution by emission in the troposphere of dust of micrometer size containing PbSO(4). As the particles evolve in the troposphere, their chemical and physical properties - and hence their characteristics such as toxicity - change by accumulation of atmospheric heterogeneous reactions. Calcite (CaCO(3)) represents a large part of the mineral fraction in tropospheric aerosols with aerodynamic diameters less than 10 microm. The calcite particles are expected to react with PbSO(4) particles. In an effort to model the chemical behaviour of PbSO(4) individual particles in the troposphere, we present the in situ Raman imaging results during the course of the reactions in a water droplet of PbSO(4) particles with a calcite microcrystal surface. The computer-microcontrolled XY scanning and Z focusing of confocal Raman imaging combined with multivariate curve resolution (MCR) of Raman images have resolved the severe spectral overlaps of the Raman spectra which are not resolved by the spatial resolution of the instrument ( approximately 1 microm(3)). The results pointed out the identification and the mapping of Pb(3)(CO(3))(2)(OH)(2), PbCO(3) and CaSO(4).2H(2)O (gypsum) on the calcite surface.  相似文献   

3.
Various types of pattern formation and self-organization phenomena can be observed in biological, chemical, and geochemical systems due to the interaction of reaction with diffusion. The appearance of static precipitation patterns was reported first by Liesegang in 1896. Traveling waves and dynamically changing patterns can also exist in reaction-diffusion systems: the Belousov-Zhabotinsky reaction provides a classical example for these phenomena. Until now, no experimental evidence had been found for the presence of such dynamical patterns in precipitation systems. Pattern formation phenomena, as a result of precipitation front coupling with traveling waves, are investigated in a new simple reaction-diffusion system that is based on the precipitation and complex formation of aluminum hydroxide. A unique kind of self-organization, the spontaneous appearance of traveling waves, and spiral formation inside a precipitation front is reported. The newly designed system is a simple one (we need just two inorganic reactants, and the experimental setup is simple), in which dynamically changing pattern formation can be observed. This work could show a new perspective in precipitation pattern formation and geochemical self-organization.  相似文献   

4.
Numerical simulations of nonequilibrium chemical reactions inside an air bubble in liquid water irradiated by ultrasound have been performed for various ambient bubble radii. The intensity of sonoluminescence (SL) has also been calculated taking into account electron-atom bremsstrahlung, radiative attachment of electrons to neutral molecules, radiative recombination of electrons and ions, chemiluminescence of OH, molecular emission from nitrogen, etc. The lower bound of ambient radius for an active bubble in SL and sonochemical reactions nearly coincides with the Blake threshold for transient cavitation. The upper bound is in the same order of magnitude as that of the linear resonance radius. In actual experiments, however, the distribution of ambient radius for active bubbles may be narrow at around the threshold ambient radius for the shape instability. The threshold peak temperature inside an air bubble for nitrogen burning is higher than that for oxidant formation. The threshold peak temperatures depend on ultrasonic frequency and acoustic amplitude because chemical reactions inside a bubble are in nonequilibrium. The dominant emission mechanism in SL is electron-atom bremsstrahlung except at a lower bubble temperature than 2000 K, for which molecular emissions may be dominant.  相似文献   

5.
In this work, a detailed experimental analysis of the nanoparticle formation dynamics and the formation mechanism in a reverse microemulsion system is given. The precipitation of barium sulfate nanoparticles inside microemulsion droplets is investigated at the molecular scale with respect to the evolution of the particle size distribution and the particle morphology by an extensive transmission electron microscope (TEM) analysis. Different mixing procedures (feeding strategies) of two reactants, barium chloride and potassium sulfate, are evaluated concerning their ability for a tailored particle design under consideration of the complete particle size distribution (modality and polydispersity). It is shown that improved knowledge about the particle formation mechanisms, the dynamics, and the influence of the colloidal microemulsion structure could be used for a tailored design of particles,for example, controlled synthesis of nanoparticles with a bimodal particle size distribution by the application of a sophisticated feeding strategy.  相似文献   

6.
以硝酸铅和硫代乙酰胺为前体,十二烷基苯磺酸钠(SDBS)扮演了前体和表面活性剂的双重角色,制备出硫化铅纳米带。 采用透射电子显微镜、X射线衍射和光致发光对所制备的纳米带进行了表征。 结果表明,中间产物PbSO4在水热条件下对PbS纳米带的进一步形成主要起到模板作用。 进一步考察了纳米带形成机理,结果表明,中间产物PbSO4对表面活性剂是有制约性的,而当改变中间产物保持条件不变的情况下,模板效应失控,只能得到不规则的微晶体。 实验结果表明,制备硫化铅纳米带反应速度较为缓慢,易于控制,为制备不同形貌纳米带提供了一种有效方法。  相似文献   

7.
We investigate the structural evolution of an A/B/C ternary mixture in which the A and B components can undergo a reversible chemical reaction to form C. We developed a lattice Boltzmann model for this ternary mixture that allows us to capture both the reaction kinetics and the hydrodynamic interactions within the system. We use this model to study a specific reactive mixture in which C acts as a surfactant, i.e., the formation of C at the A/B interface decreases the interfacial tension between the A and B domains. We found that the dynamics of the system is different for fluids in the diffusive and viscous regimes. In the diffusive regime, the formation of a layer of C at the interface leads to a freezing of the structural evolution in the fluid; the values of the reaction rate constants determine the characteristic domain size in the system. In the viscous regime, where hydrodynamic interactions are important, interfacial reactions cause a slowing down of the domain growth, but do not arrest the evolution of the mixture. The results provide guidelines for controlling the morphology of this complex ternary fluid.  相似文献   

8.
We investigate the possibility of Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. Turing systems can lead to a variety of complex spatial patterns evolving with time. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. We present simulation data showing the possibility of such pattern formation. On the other hand, existing experimental data suggest that in situ tribofilms can form at the frictional interface due to a variety of friction-induced chemical reactions (oxidation, the selective transfer of Cu ions, etc.). These tribofilms as well as other frictional "secondary structures" can form various patterns (islands or honeycomb domains). This mechanism of pattern formation can be attributed to the Turing systems.  相似文献   

9.
The contributions from various elementary reactions to the overall heat evolution rate in the propagation of hydrogen-air flames at atmospheric pressure have been determined. The study has been carried out by solving the system of kinetic equations and a heat balance equation, involving component concentration and temperature data available from the literature. The key role in heat evolution and in the propagation of the steady-state combustion wave is played by the set of reactions that lead to reaction chain branching. The contribution from the hydrogen atom recombination reaction to the overall heat evolution does not exceed 7% even for rich mixtures and cannot ensure flame propagation without contributions from other exothermic reactions.  相似文献   

10.
凝胶扩散体系中磷酸钙的沉淀图形   总被引:2,自引:0,他引:2  
0引言生物矿化可分为正常矿化和异常矿化。胆结石是一种生物异常矿化,是世界性的常见病和多发病,形成机理尚不十分清楚。从结石的形成过程来看,不仅结石的组成与其形成机理有关,而且结石的组成分布和剖面图形同样与之有密切关系。人们经常可以观察到,一类结石的剖面具有周期环状图形,且棕色和乳白色环相间。其中白色环的主要成份为胆固醇;棕色环的主要成份为胆红素钙络合物,同时棕色环中还常常含有少量的磷酸钙和碳酸钙等无机难溶盐。由于结石的形成是一个长期的过程,研究表明在结石生长的过程中胆汁的组成不发生规律性的周期变化…  相似文献   

11.
The manifestation and development of convection during pattern formation in the 1,4-cyclohexanedione-acid-bromate reaction was investigated using pulsed gradient spin-echo nuclear magnetic resonance (PGSE NMR) experiments. An apparatus was devised that enabled convection to be probed inside an NMR spectrometer and prevented hydrodynamic motion arising from extraneous sources, such as poor mixing or temperature gradients imposed by the experimental setup. PGSE experiments were performed concurrently with magnetic resonance imaging (MRI) experiments to show that convection arose spontaneously from inhomogeneities associated with the chemical patterns. Quantitative data on diffusion coefficients and hydrodynamic velocities are reported.  相似文献   

12.
A general kinetic approach allowing the prediction of the molecular architecture of non-linear polymers is applied to the study of the copolymerization of methyl methacrylate (MMA) with ethylene glycol dimethacrylate (EGDMA). Dynamic predictions of molecular weight distributions, sequence length distributions and mean square radius of gyration are possible before and after gelation. A set of experiments concerning the copolymerization of MMA and EGDMA was carried out in toluene solution at 60 °C for which classic radical kinetics is a good approximation. The time evolution of key polymer properties was followed using a SEC system with a refractive index detector coupled with MALLS allowing the determination of absolute weight average molecular weight and apparent molecular size distributions as well as z-average radius of gyration. Special focus was given to assess the influence of the initial amount of cross-linker on the dynamics of the non-linear structure build-up of these products. A kinetic scheme comprising 23 different chemical species and 76 chemical reactions was used in the modeling studies of this chemical system. Most of the kinetic parameters used in the simulations have been collected from previous studies. For experiments at low monomer conversion (up to about 0.5) a good agreement between predictions and experimental measurements is observed for molecular weights and z-average radius of gyration by fitting a small number of parameters describing gel effect (with a conversion dependent but chain length independent termination rate parameter) and the relative propagation on pendant double bonds. However, predicted values of weight-average molecular weights and z-average radius of gyration before gelation are too low at higher monomer conversions with non-linear systems. The likely cause is the presence of intramolecular reactions which should not be neglected in these circumstances.  相似文献   

13.
Nanomaterials that undergo a physical change upon chemical warfare agent (CWA) exposure can potentially be used in detectors to warn soldiers of their presence or in fabrics to provide on-demand protection. In this study, hybrid nanoparticles (NPs) were prepared by grafting a CWA-responsive polymer from a silicon dioxide (SiO2) surface using ring opening metathesis polymerization; the covalent functionalization of the polymers on the NP surface was confirmed by gel permeation chromatography, dynamic light scattering, and transmission electron microscopy analysis. The polymer-grafted SiO2 NPs were found to undergo a pronounced decrease (approximately 200 nm) in their hydrodynamic radius upon exposure to CWA simulants trifluoroacetic acid and diethyl chlorophosphate in toluene. This decrease in hydrodynamic radius is attributed to the electrophile-mediated ionization of the triarylmethanol responsive unit and represents a rare example of polycation formation leading to polymer chain collapse. We have ascribed this ionization-induced collapse to the formation of a favorable stacking interaction between the planar triarylcations. These studies have important implications for the development of breathable fabrics that can provide on-demand protection for soldiers in combat situations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3034–3040  相似文献   

14.
Stable suspensions of protein microgels are formed by heating salt-free β-lactoglobulin solutions at concentrations up to about C = 50 g·L(-1) if the pH is set within a narrow range between 5.75 and 6.1. The internal protein concentration of these spherical particles is about 150 g·L(-1) and the average hydrodynamic radius decreases with increasing pH from 200 to 75 nm. The formation of the microgels leads to an increase of the pH, which is a necessary condition to obtain stable suspensions. The spontaneous increase of the pH during microgel formation leads to an increase of their surface charge density and inhibits secondary aggregation. This self-stabilization mechanism is not sufficient if the initial pH is below 5.75 in which case secondary aggregation leads to precipitation. Microgels are no longer formed above a critical initial pH, but instead short, curved protein strands are obtained with a hydrodynamic radius of about 15-20 nm.  相似文献   

15.
The homogeneous catalyst Re(CO)5X (X = Cl, Br) was found to promote the homopolymerization of terminal alkynes at elevated temperatures. Detection and structure characterization of low-molecular-weight products provided evidence of the formation of a metal–acetylide species as the initiator of polymerization, and propagation occurs by a series of insertion reactions of coordinated alkynes into metal–carbon bonds of the growing chain. Evidence of the active forms of the catalyst comes from studies on gas evolution, catalyst derivatization, and copolymerization reactions. The final polymers have a linear, polyconjugated macrostructure, and the formation of aromatic species was not detected in these reactions.  相似文献   

16.
The combined application of various methods of investigation (e.g. nephelometry, conductivity measurements, electron microscopy, isotope exchange, BET surface area determinations, paper chromatograhy, coprecipitation) lead to a refined insight into the course of precipitation reactions. The formation of a new solid phase within a solution can, in the case of ionic crystals, be formally described as proceeding via a number of steps – nucleation, growth, ripening, and recrystallization (aging) – which overlap in time. The precipitation of hydroxides is a more complex process since additional chemical reactions (e.g. hydrolysis, condensation reactions) take place within the newly formed solid phase.  相似文献   

17.
Salt-induced protein phase transitions in drying drops   总被引:1,自引:0,他引:1  
Protein phase transitions in drying sessile drops of protein-salt-water colloidal systems were studied by means of optical and atom-force microscopy. The following sequence of events was observed during drop drying: attachment of a drop to a glass support; redistribution of colloidal phase due to hydrodynamic centrifugal stream; protein ring formation around the edge; formation of protein spatial structures inside a protein ring that pass into gel in the middle of the drop; salt crystallization in the shrinking gel. It was assumed that rapid drying of a protein ring over the circle of high colloidal volume fraction and low strength of interparticle attraction leads to formation of colloidal glass, whereas gel forms only in the middle of the drop at very low protein volume fraction and strong attraction between the particles. Before gelation, colloidal particles form fractal clusters. In dried drops of salt-free protein solutions, no visual protein structures were observed. Structural evolution of protein in sessile drying drops of protein-salt aqueous colloidal solutions is discussed on the basis of experimental data.  相似文献   

18.
Detailed studies of a new approach to the synthesis and encapsulation of silver and silver halide nanoparticles inside shell-cross-linked cylindrical block copolymer polyisoprene-block-polyferrocenyldimethylsilane (PI-b-PFS) micelles (1) through in situ redox reactions are reported. The cylindrical nanostructures 1 were prepared by the solution self-assembly of the PI-b-PFS diblock copolymer in the PI-selective solvent hexane followed by Pt(0)-catalyzed PI shell-cross-linking hydrosilylation reactions. The partial preoxidation of the swollen PFS core using tris(4-bromophenyl)aminium hexachloroantimonate [p-BrC6H4)3N][SbCl6] (2, Magic Blue) followed by redox reaction between the remaining Fe(II) centers in the PFS core and Ag(+) cations led to the formation of silver nanoparticles. High-resolution scanning transmission electron microscopy images of the resulting peapod structures provided a clear indication that the nanoparticles were encapsulated inside the micelles. The composition of the nanoparticles was analyzed by energy-dispersive X-ray spectroscopy (EDX). By combining the evolution of the UV-vis spectra of the reaction mixture and EDX measurements, we surprisingly found that silver halide seed particles were formed through a precipitation reaction at an early stage of the encapsulation process. The size of the silver nanoparticles varied with different amounts of silver ions added to the micelle solution. When I2 was used as the preoxidant, AgI nanoparticles were formed and encapsulated inside the cylinders through the precipitation reaction between iodide anions and silver ions. The packing density of the resulting AgI nanoparticles was increased by an iterative addition method, which utilizes the reversible redox properties of PFS. The small encapsulated AgI nanoparticles were also shown to serve as seeds for the formation of larger Ag nanoparticles when a silver salt was subsequently added.  相似文献   

19.
Wang Z  Cheng KL 《Talanta》1982,29(7):551-556
Serious co-precipitation ( > 60%) of traces of tervalent metal ions has been found to occur in the precipitation of PbSO(4). A moderate amount (approximately 11%) of Zn(2+) and an insignificant amount of Cu(2+) are also co-precipitated. To deal with this problem, for the determination of Fe (with 1,10-phenanthroline), Al (with oxine-EDTA-KCN), Bi (with diethyldithiocarbamate-EDTA-KCN), and Cu (with 2,2'-biquinoline) in lead- and tin-base solders or white-metal bearing alloys, the PbSO(4) is dissolved in tartrate solution. Zinc is determined with dithizone after the PbSO(4) has been thoroughly washed with a dilute ammonia solution.  相似文献   

20.
The chemistry of (+)-ledene and (−)-isoledene, both easily available from (+)-aromadendrene has been investigated. Reactions at the double bond of ledene take place preferably from the β-side. Under acidic conditions its C7-C8 β-epoxide and β-diol preferably react via carbocations, which are initially formed at C8. Rearrangement takes place to compounds with cubebane and cadinane skeletons. The reaction pattern of isoledene and its α-epoxide, under acidic conditions, is governed by the easy formation of an intermediate α-cyclopropylcarbinyl carbocation. Further reactions lead to products in which the C2-C3 bond of the cyclopropane ring is broken to give compounds with a guaiane skeleton. Guaiane-type dienes and unsaturated cyclic ethers are the final products of these rearrangements. Several derivatives of these compounds have been prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号