首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)2(deebq)](PF6)2, [Ru(bq)2(deeb)](PF6)2, [Ru(deebq)2(bpy)](PF6)2, [Ru(bpy)(deebq)(NCS)2], or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)2(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with the Kohlrausch-Williams-Watts model.  相似文献   

2.
The oxidations of cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6), cis-[OsII(bpy)2(Cl)(NH3)](PF6), and [OsII(typ)(bpy)(NH3)](PF6)2 have been studied by cyclic voltammetry and by controlled-potential electrolysis. In acetonitrile or in acidic, aqueous solution, oxidation is metal-based and reversible, but as the pH is increased, oxidation and proton loss from coordinated ammonia occurs. cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6) are oxidized by four electrons to give the corresponding OsVI nitrido complexes, [OSVI(typ)(Cl)2(N)]+. Oxidation of [Os(typ)(bpy)(NH3)](PF6)2 occurs by six electrons to give [Os(tpy)(bpy)(NO)](PF6)3. Oxidation of cis-[OsII(bpy)2(Cl)(NH3)](PF6) at pH 9.0 gives cis-[OsII(bpy)2(Cl)(NO)](PF6)2 and the mixed-valence form of the mu-N2 dimer [cis-[Os(bpy)2(Cl)2[mu-N2)](PF6)3. With NH4+ added to the electrolyte, cis-[OsII(bpy)2(Cl)(N2)](PF6) is a coproduct. The results of pH-dependent cyclic voltammetry measurements suggest OsIV as a common intermediate in the oxidation of coordinated ammonia. For cis- and trans-[OsIII(tpy)(Cl)2(NH3)]+, OsIV is a discernible intermediate. It undergoes further pH-dependent oxidation to [OsVI(tpy)(Cl)2(N)]+. For [OsII(tpy)(bpy)(NH3)]2+, oxidation to OsIV is followed by hydration at the nitrogen atom and further oxidation to nitrosyl. For cis-[OsII(bpy)2(Cl)-(NH3)]+, oxidation to OsIV is followed by N-N coupling and further oxidation to [cis-[Os(bpy)2(Cl)2(mu-N2)]3+. At pH 9, N-N coupling is competitive with capture of OsIV by OH- and further oxidation, yielding cis-[OsII(bpy)2(Cl)(NO)]2+.  相似文献   

3.
Mesoporous thin films comprised of interconnected nanocrystalline (anatase, 20 nm) TiO2 particles were functionalized with [Ru(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine and deebq is 4,4'-diethylester-2,2'-biquinoline, or iron(III) protoporphyrin IX chloride (hemin). These compounds bind to TiO2 with saturation surface coverages of 8 (+/-2)x10(-8) mol/cm2. Electrochemical measurements show that the compounds first reduction occurs prior to or commensurate with the reduction of the TiO2 electrode. Apparent diffusion constants, Dapp, abstracted from chronoabsorption data measured in acetonitrile were found to be dependent on the applied potential and the electrolyte used. The Dapp values for reduction of Ru(dcbq)(bpy)2/TiO2, where dcbq is 4,4'-(COO-)2-2,2'-biquinoline, increased with decreasing surface coverage. At near saturation surface coverage, the apparent diffusion constant was 9.0 x 10(-12) m2/s after a potential step from -0.61 to -1.31 vs Fc+/0. The Dapp varied by over a factor of six with applied potential for the oxidation of [Ru(dcbq-)(bpy)2]-/TiO2 to Ru(dcbq)(bpy)2/TiO2. Complete reduction of hemin/TiO2 to heme/TiO2 was observed under conditions where the heme surface coverage was about 1/100 of that expected for monolayer surface coverage. The hemin reduction rates were strongly dependent on the final applied potential. The rates for heme to hemin oxidation were less than or equal to the hemin to heme rates in the presence and absence of pyridine. This behavior was opposite to that observed with Ru(dcbq)(bpy)2/TiO2 where reduction was slower than oxidation. A Gerischer-type model was proposed to rationalize the rectifying properties of the interface.  相似文献   

4.
A rigid rod-like organic molecular ensemble comprised of a triarylamine electron donor, a 2,2'-bipyridine (bpy) ligand, and a 9,10-anthraquinone acceptor was synthesized and reacted with suitable metal precursors to yield triads with Ru(bpy)(3)(2+), Os(bpy)(3)(2+), and [Ir(2-(p-tolyl)pyridine)(2)(bpy)](+) photosensitizers. Photoexcitation of these triads leads to long-lived charge-separated states (τ = 80-1300 ns) containing a triarylamine cation and an anthraquinone anion, as observed by transient absorption spectroscopy. From a combined electrochemical and optical spectroscopic study, the thermodynamics and kinetics for the individual photoinduced charge-separation and thermal charge-recombination events were determined; in some cases, measurements on suitable donor-sensitizer or sensitizer-acceptor dyads were necessary. In the case of the ruthenium and iridium triads, the fully charge-separated state is formed in nearly quantitative yield.  相似文献   

5.
The coordination compounds Ru(deeb)(NH3)4(PF6)2 and Ru(deeb)(NH2(CH2)2NH2)4(PF6)2, where deeb is 4,4'-(CO2CH2CH3)2-2,2'-bipyridine, were synthesized and attached to optically transparent nanocrystalline (anatase) TiO2 films. The compounds were found to be nonemissive in fluid acetonitrile and when attached to TiO2 with excited-state lifetimes <10 ns. Infrared measurements showed the expected isotopic substitution of the deuterated compounds on TiO2 thin films. A small 10-15 mV shift in the RuIII/II reduction potentials was measured upon deuteration. Metal-to-ligand charge-transfer (MLCT) excitation resulted in interfacial electron transfer into the TiO2 semiconductor with quantum yields that were dependent on the excitation wavelength and deuteration of the ammine ligands. The quantum yields were optimized with blue light excitation (417 nm) and deuterium substitution. In contrast, the kinetic rate constants for charge recombination were insensitive to deuteration and the excitation wavelength. Control experiments with Ru(deeb)(bpy)2(PF6)2 indicated that deuteration of the TiO2 surface alone does not affect the injection or recombination processes. A model is proposed wherein electron injection occurs in competition with vibrational relaxation and/or intersystem crossing of the excited states. Exchange of hydrogen by deuterium slows vibrational relaxation and/or intersystem crossing, resulting in higher injection yields.  相似文献   

6.
The compounds Ru(bpy) 2(BTL)(PF 6) 2 and Ru(deeb) 2(BTL)(PF 6) 2, where bpy is 2,2'-bipyridine, deeb is 4,4'-(C 2H 5CO 2) 2-bpy, and BTL is 9'-[4,5-bis(cyanoethylthio)]-1,3-dithiol-2-ylidene]-4',5'-diazafluorene, were found to have very high extinction coefficients in the visible region. In an acetonitrile solution, the extinction of Ru(deeb) 2(BTL)(PF 6) 2 was = 44 000 +/- 1000 M (-1) cm (-1) at lambda = 470 nm. Two quasi-reversible oxidation waves, E 1/2 = +0.88 and +1.16 V, and an irreversible reduction, E pr = -1.6 V, were observed versus ferrocene (Fc (+/0)). At -40 degrees C, a state was observed with spectroscopic properties characteristic of a metal-to-ligand charge-transfer excited state, tau = 25 ns. This same compound was found to photoinject electrons into TiO 2 with a quantum yield Phi = 0.3 +/- 0.2 for 532.5 or 417 nm light excitation in a 0.1 M LiClO 4/acetonitrile electrolyte. In regenerative solar cells, a sustained photocurrent was observed with a maximum incident photon-to-current efficiency of 0.4. The photocurrent action and absorptance spectra were in good agreement, consistent with injection from a single excited state.  相似文献   

7.
Emission decays of triplet metal-to-ligand charge transfer states in anisotropic crystals of [Ru(1 - x)Os(x)(bpy)(3)]X(2) (bpy = 2,2'-bipyridine, X = PF(6)-, ClO(4)-, SbF(6)-, and 0.115 > x > 0.001) at approximately 300 K were measured by means of time-correlated single-photon counting. Rates of excitation hopping calculated on the basis of an interaction between transition dipoles of a donor cation and an acceptor cation are insufficient to simulate the single-exponential decays (x = 0.0099) and the multiexponential decays (x = 0.060 and 0.115) of the PF(6)- salt crystals. A limiting rate of excitation hopping to an imaginary cation at the van der Waals distance via a super-exchange interaction between d orbitals through the bpy ligands was determined to be 0.83 x 10(10) s(-1) on average by means of a step-by-step Monte Carlo simulation, assuming an distance-attenuation factor, beta, of the exchange interaction of 10 nm-1. The total rate of excitation hopping via both a dipole-dipole mechanism and a super-exchange mechanism to the neighboring sites of the cation was calculated to be 5.4 x 10(9) s(-1) for the PF(6)- crystal. Anisotropic diffusion constants estimated from the hopping rates and lengths in the PF(6)- crystal are 9.3 x 10(-6), 9.1 x 10(-6), and 1.4 x 10(-6) cm(2)s(-1) along the a axis, the b axis, and the c axis, respectively, which are compared with an isotropic diffusion constant, 1.3 x 10(-6) cm(2) s(-1), estimated from the pseudo-bimolecular rate constant of excitation transfer to [Os(bpy)(3)](2+), using an isotropic Smoluchowski equation. A multiexponential emission decay of [Ru(0.885)Os(0.115)(bpy)(3)](PF(6))(2) was also simulated to determined the limiting rate of excitation transfer to [Os(bpy)(3)](2+) at the van der Waals distance (2.6 x 10(11) s(-1)). The magnitude of beta determined is 6.5 and 11.5 nm(-1) for the ClO(4)- and the SbF(6)- salt crystals, respectively, on reference to that of beta (10 nm(-1)) for the PF(6)- salt crystal.  相似文献   

8.
Dennany L  Keyes TE  Forster RJ 《The Analyst》2008,133(6):753-759
Luminescence quenching of the metallopolymers [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+), both in solution and as thin films, is reported, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine). When the metallopolymer is dissolved in ethanol, quenching of the ruthenium excited state, Ru(2+*), within [Ru(bpy)(2)(PVP)(10)](2+) by [Os(bpy)(3)](2+) proceeds by a dynamic quenching mechanism and the rate constant is (1.1 +/- 0.1) x 10(11) M(-1) s(-1). This quenching rate is nearly two orders of magnitude larger than that found for quenching of monomeric [Ru(bpy)(3)](2+) under the same conditions. This observation is interpreted in terms of an energy transfer quenching mechanism in which the high local concentration of ruthenium luminophores leads to a single [Os(bpy)(3)](2+) centre quenching the emission of several ruthenium luminophores. Amplifications of this kind will lead to the development of more sensitive sensors based on emission quenching. Quenching by both [Os(bpy)(3)](2+) and molecular oxygen is significantly reduced within a thin film of the metallopolymer. Significantly, in both optically driven emission and electrogenerated chemiluminescence, emission is observed from both ruthenium and osmium centres within [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+) films, i.e. the ruthenium emission is not quenched by the coordinated [Os(bpy)(2)](2+) units. This observation opens up new possibilities in multi-analyte sensing since each luminophore can be used to detect separate analytes, e.g. guanine and oxoguanine.  相似文献   

9.
Humbs W  Yersin H 《Inorganic chemistry》1996,35(8):2220-2228
Highly resolved emission, excitation, and resonantly line-narrowed spectra, as well as emission decay properties of [Rh(bpy-h(8))(n)(bpy-d(8))(3-n)](3+) (n = 0, 2, 3; bpy = 2,2'-bipyridine) doped into [Zn(bpy-h(8))(3)](ClO(4))(2) are presented for the first time. [Rh(bpy-h(8))(3)](3+) and [Rh(bpy-d(8))(3)](3+) exhibit one low-lying triplet T(1) at 22 757 +/- 1 and 22 818 +/- 1 cm(-1), respectively (blue shift 61 cm(-1)), while [Rh(bpy-h(8))(2)(bpy-d(8))](3+) has two low-lying triplets at 22 757 +/- 1 and 22 818 +/- 1 cm(-1). The well-resolved vibrational satellite structures show, that the equilibrium positions of the triplet and the singlet ground S(0) state are not very different and that the force constants in T(1) are mostly slightly smaller than in S(0). Moreover, the vibrational satellite structure is strongly dominated by vibrational ligand modes, which demonstrates the pipi character of the corresponding transition. However, the occurrence of several very weak vibrational modes of metal-ligand character displays a small influence of the metal ion. This is supported by the emission decay behavior. [Rh(bpy-h(8))(2)(bpy-d(8))](3+) exhibits an emission which is clearly assignable to the protonated ligand(s), even when the deuterated ligand is selectively excited. Obviously, an efficient intramolecular energy transfer from the deuterated to the protonated ligand(s) occurs, presumably mediated by the small Rh(3+) d-admixture. A so-called "dual emission" is not observed. Moreover, a series of spectroscopic properties of the lowest excited state of [Rh(bpy)(3)](3+) (energies of electronic origins, emission decay times, zero-field splittings, structures of vibrational satellites, etc.) is compared to properties of bpy, [Pt(bpy)(2)](2+), [Ru(bpy)(3)](2+), and [Os(bpy)(3)](2+). This comparison displays in a systematic way the increasing importance of the metal d and/or MLCT character for the lowest excited states and thus provides guidelines for an experimentally based classification. In particular, the lowest excited states of [Rh(bpy)(3)](3+) may be ascribed as being mainly of (3)pipi character confined to one ligand in contrast to the situation found for [Ru(bpy)(3)](2+) where these states are covalently delocalized over the whole complex.  相似文献   

10.
The excited-state dynamics of a transition metal complex, tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)(3)](2+), has been investigated using femtosecond fluorescence upconversion spectroscopy. The relaxation dynamics in these molecules is of great importance in understanding the various ultrafast processes related to interfacial electron transfer, especially in semiconductor nanoparticles. Despite several experimental and theoretical efforts, direct observation of a Franck-Condon singlet excited state in this molecule was missing. In this study, emission from the Franck-Condon excited singlet state of [Ru(bpy)(3)](2+) has been observed for the first time, and its lifetime has been estimated to be 40 +/- 15 fs. Biexponential decays with a fast rise component observed at longer wavelengths indicated the existence of more than one emitting state in the system. From a detailed data analysis, it has been proposed that, on excitation at 410 nm, crossover from higher excited (1)(MLCT) states to the vibrationally hot triplet manifold occurs with an intersystem crossing time constant of 40 +/- 15 fs. Mixing of the higher levels in the triplet state with the singlet state due to strong spin-orbit coupling is proposed. This enhances the radiative rate constant, k(r), of the vibrationally hot states within the triplet manifold, facilitating the upconversion of the emitted photons. The vibrationally excited triplet, which is emissive, undergoes vibrational cooling with a decay time in the range of 0.56-1.3 ps and relaxes to the long-lived triplet state. The results on the relaxation dynamics of the higher excited states in [Ru(bpy)(3)](2+) are valuable in explaining the role of nonequilibrated higher excited sensitizer states of transition metal complexes in the electron injection and other ultrafast processes.  相似文献   

11.
We report the structure, spectroscopy, and electrochemistry of cis-[Os(bpy)(2)(DMSO)(2)](OTf)(2), where bpy is 2,2'-bipyridine, DMSO is dimethyl sulfoxide, and OTf is trifluoromethanesulfonate. Electrochemical measurements are consistent with S-to-O isomerization following the oxidation of Os(2+) (1.8 V vs Ag/AgCl). Visible irradiation of the metal-to-ligand charge-transfer transition (355 nm) of [Os(bpy)(2)(DMSO)(2)](2+) in the solid state and solution yields an emissive S-bonded excited state and S-to-O excited-state isomerization on a subnanosecond time scale. These results and a comparison to the nonphotoactive [Os(bpy)(2)Cl(DMSO)](+) are discussed.  相似文献   

12.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

13.
IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os(II)(bpy)(CO)(2)Cl(2)]. The one-electron-reduced form, [Os(II)(bpy(.)(-))(CO)(2)Cl(2)](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [[Os(0)(bpy(*)(-))(CO)(2)](-)](n), the electron-rich electrocatalyst of CO(2) reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os(0)(bpy)(CO)(MeCN)(2)Cl](n).  相似文献   

14.
Octahedral tris-chelate complexes [M(II)(bpy)(3)](2+) (M = Ru or Os, bpy = 2,2'-bipyridyl), covalently attached to the 3'- and 5'-phosphates of two oligonucleotides, are juxtaposed when hybridized contiguously to a fully complementary DNA target. Visible metal-to-ligand charge-transfer (MLCT) excitation of the [Ru(II)(bpy)(3)](2+) unit leads to resonance energy transfer to the MLCT state of the [Os(II)(bpy)(3)](2+) moiety, with the energy transfer efficiency depending on the degree of hybridization. The extent of attenuation of the intense red luminescence from the Ru(II) chromophore hence allows highly sensitive structural probing of the assembly and constitutes a novel approach to DNA sensing which is capable of detecting mutations.  相似文献   

15.
The compound Ru(bpy)2(dppz-R)(PF6)2, where bpy is 2,2'-bipyridine and dppz-R is 11-(diethoxyphosphorylmethyl)dipyrido[3,2-a:2',3'-c]phenazine, was prepared and anchored to mesoporous nanocrystalline (anatase) TiO2 thin films as a probe of the effects of interfacial water on excited-state charge transfer processes at semiconductor interfaces. In nitrogen-saturated fluid acetonitrile, the Ru(bpy)2(dppz-R)(PF6)2 compound was found to be highly photoluminescent. Water was found to quench the excited state by a mechanism adequately described by the Perrin model, from which the radius of quenching was abstracted, 75 +/- 2 A. The Ru(bpy)2(dppz-R)(PF6)2 compounds were found to bind to the TiO2 thin films in high surface coverages, 5 x 10(-8) mol cm(-2). When these films were immersed in acetonitrile, long-lived excited states (tau = 825 ns) that were quenched by the addition of water were observed. About 30% of the excited states could not be quenched by water. Efficient electron injection, phi(inj) = 0.8, was observed after light excitation of Ru(bpy)2(dppz-R)/TiO2 in a 0.1 M LiClO4/acetonitrile solution. The addition of large concentrations of water, >0.5 M, was found to decrease the injection yield to phi(inj) = 0.3.  相似文献   

16.
A novel Ru(II) complex possessing two sequentially linked viologen units, Ru-V(1)-V(2)(6+), was synthesized and characterized. Upon excitation of the Ru(II) unit (lambda(exc) = 532 nm, fwhm approximately 10 ns), a long-lived charge-separated (CS) state is observed (tau = 1.7 micros) by transient absorption spectroscopy. Unlike Ru(bpy)(3)(2+), which cleaves DNA upon photolysis through the formation of reactive oxygen species, such as (1)O(2) and O(2)(-), the photocleavage of plasmid DNA by Ru-V(1)-V(2)(6+) is observed both in air and under N(2) atmosphere (lambda(irr) > 395 nm).  相似文献   

17.
The yields and dynamics for energy transfer from the metal-to-ligand charge-transfer excited states of Ru(deeb)(bpy)(2)(PF(6))(2), Ru(2+), and Os(deeb)(bpy)(2)(PF(6))(2), Os(2+), where deeb is 4,4'-(CH(3)CH(2)CO(2))(2)-2,2'-bipyridine, anchored to mesoporous nanocrystalline (anatase) TiO(2) thin films were quantified. Lateral energy transfer from Ru(2+)* to Os(2+) was observed, and the yields were measured as a function of the relative surface coverage and the external solvent environment (CH(3)CN, THF, CCl(4), and hexanes). Excited-state decay of Ru(2+)*/TiO(2) was well described by a parallel first- and second-order kinetic model, whereas Os(2+)*/TiO(2) decayed with first-order kinetics within experimental error. The first-order component was assigned to the radiative and nonradiative decay pathways (tau = 1 micros for Ru(2+)*/TiO(2) and tau = 50 ns for Os(2+)*/TiO(2)). The second-order component was attributed to intermolecular energy transfer followed by triplet-triplet annihilation. An analytical model was derived that allowed determination of the fraction of excited-states that follow the two pathways. The fraction of Ru(2+)*/TiO(2) that decayed through the second-order pathway increased with surface coverage and excitation intensity. Monte Carlo simulations were performed to estimate the Ru(2+)* --> Ru(2+) intermolecular energy transfer rate constant of (30 ns)(-1).  相似文献   

18.
The complexes [M(bpy)(2)(Q)](PF(6)) (bpy = 2,2'-bipyridyl; M = Ru, Os; Q = 3,5-di-tert-butyl-N-phenyl-1,2-benzoquinonemonoimine) were isolated and studied by X and W band EPR in a dichloromethane solution at ambient temperatures and at 4 K. For M = Ru, the (14)N hyperfine splitting confirms the Ru(II)/semiquinone formulation, although at a > 1 mT, the (99,101)Ru satellite coupling is unusually high. W band EPR allowed us to determine the relatively small g anisotropy Delta g = g(1) - g(3) = 0.0665 for the ruthenium complex. The osmium analogue exhibits a much higher difference Delta g = 0.370, which is attributed not only to the larger spin-orbit coupling constant of Os versus that of Ru but also to a higher extent of metal contribution to the singly occupied molecular orbital. The difference Delta E between the oxidation and reduction potentials of the radical complexes is larger for the ruthenium compound (Delta E = 0.87 V) than for the osmium analogue (Delta E = 0.72), confirming the difference in metal/ligand interaction. The electrochemically generated states [M(bpy)(2)(Q)](n+), n = 0, 1, 2, and 3, were also characterized using UV-vis-near-infrared spectroelectrochemistry.  相似文献   

19.
The coordination compounds [Cu(bpy-MV2+)(PPh3)2](PF6)3, where bpy-MV2+ is the 1-(4-(4'-methyl-2,2'-bipyridin-4-yl)butyl)-1'-methyl-4, 4'-bipyridinediium(2+) cation, and [Cu(dmb)(PPh3)2](PF6), where dmb is 4,4'-dimethyl-2,2'-bipyridine, have been prepared and characterized. Visible light (417 nm) excitation of [Cu(bpy-MV2+)(PPh3)2]3+ at room temperature leads to rapid intramolecular electron transfer, kcs > 1 x 10(8) s-1, to form a charge-separated state with an electron localized on the pendant viologen group and a copper(II) metal center, abbreviated [CuII-bpy-MV.+]. This state recombines to ground-state products with first-order rate constants that can be tuned with solvent over a approximately 10(7)-10(5) s-1 range. The activation parameters were determined from temperature-dependent electron-transfer data with Arrhenius analysis. A model is proposed wherein a solvent molecule is coordinated to Cu(II) in the charge-separated state, [(S)CuII-bpy-MV.+]. Visible light excitation of [Cu(dmb)(PPh3)2](PF6) in argon-saturated dichloromethane produces long-lived photoluminescent excited states, tau = 80 ns, that are dynamically quenched by the addition of Lewis basic solvents. The measured quenching constants each correlate well with the lifetime of the charge-separated state measured after excitation of [Cu(bpy-MV2+)(PPh3)2]3+ in the corresponding solvent.  相似文献   

20.
The synthesis and characterization of new Ru(II) and Os(II) complexes of the ligand eilatin (1) are described. The new complexes [Ru(bpy)(eil)(2)](2+) (2), [Ru(eil)(3)](2+) (3), and [Os(eil)(3)](2+) (4) (bpy = 2,2'-bipyridine; eil = eilatin) were synthesized and characterized by NMR, fast atom bombardment mass spectrometry, and elemental analysis. In the series of complexes [Ru(bpy)(x)(eil)(y)()](2+) (x + y = 3), the effect of sequential substitution of eil for bpy on the electrochemical and photophysical properties was examined. The absorption spectra of the complexes exhibit several bpy- and eil-associated pi-pi and metal-to-ligand charge-transfer (MLCT) transitions in the visible region (400-600 nm), whose energy and relative intensity depend on the number of ligands bound to the metal center (x and y). On going from [Ru(bpy)(2)(eil)](2+) (5) to 2 to 3, the d(pi)(Ru) --> pi(eil) MLCT transition undergoes a red shift from 583 to 591 to 599 nm, respectively. Electrochemical measurements performed in dimethyl sulfoxide reveal several ligand-based reduction processes, where each eil ligand can accept up to two electrons at potentials that are significantly anodically shifted (by ca. 1 V) with respect to the bpy ligands. The complexes exhibit near-IR emission (900-1100 nm) of typical (3)MLCT character, both at room temperature and at 77 K. Along the series 5, 2, and 3, upon substitution of eil for bpy, the emission maxima undergo a blue shift and the quantum yields and lifetimes increase. The radiative and nonradiative processes that contribute to deactivation of the excited level are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号