首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An expression is developed that predicts the concentration dependence of the apparent viscosity of a concentrated pseudoplastic suspension. The result, which is an extension of the Frankel and Acrivos Newtonian suspension analysis, shows that the influence of particles concentration on the effective viscosity of pseudoplastic suspensions increases as the power law index of the suspension increases. Experimental data shows good agreement with the theoretical predictions.With 8 figures  相似文献   

2.
Questions of the dynamics of bubbles in a liquid are connected with problems of cavitation [1]. In connection with cavitation phenomena in non-Newtonian media, in particular in polymeric liquids [2, 3], a study is made of the pulsations of a bubble in a polymeric liquid with an exponential rheological law. The equation of the motion of the boundary of the gas cavity is integrated numerically; here, the cases of pseudo-plastic and dilatant liquids are discussed separately. The results obtained can be used in the analysis of acoustical cavitation in aqueous solutions of polymers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 146–148, January–February, 1975.  相似文献   

3.
We propose a methodology to approximate the viscosity of multicomponent suspensions. The procedure consists of successive applications of expressions for the viscosity of binary mixtures, originally written as the product of monomodal stiffening functions. First, the viscosity of a binary mixture made of the two smallest components is calculated. This allows to extract a volume fraction that will be used, together with the volume fraction of the third component, to feed the next iteration of the procedure to calculate the viscosity of a trimodal mixture and so on. The application of this approach to arbitrary mixtures requires the detailed knowledge of the geometry of the system in the form of size ratios and compositions. When this information is unknown, an approximation of the model can still be used as a fitting tool. With that purpose, the final expression for the viscosity is written in terms of an effective volume fraction that is further approximated by the use of a (1,2) Padé approximant. This approximation allows to incorporate the crowding effects due to different species in a volume fraction-dependent crowding factor that can be used as a fitting parameter to match experimental or simulation data. We have applied the model to mixtures of particles with different sizes and tested its accuracy comparing with experimental results obtaining very good agreement.  相似文献   

4.
This note is concerned with a laminar pipe flow of a non-Newtonian fluid under the action of a small pulsating pressure gradient superposed to a steady one. The constitutive law describing the rheological behaviour of the fluid is the so-called power law (Ostwald–de Waele). An approximated analytical solution is found for the velocity, as power series of the amplitude of the periodic disturbance. The analytic solution is compared with a direct numerical solution and the perfect accord of the values obtained is underscored.  相似文献   

5.
We present a model for the shear viscosity of non-colloidal suspensions with Newtonian matrix fluids. The model is based on the original idea first presented by Brinkman (Applied Sci Research A1:27-34. 1947) for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles. In particular, we consider an inertialess suspension in which the mean flow is driven by a pressure difference, and simultaneously, the suspension is subject to simple shear. Assuming steady state, incompressibility and taking into account a resistance force which is generated due to the presence of the particles in the flow, the three-dimensional governing equations for the mean flow around a single spherical particle are solved analytically. Self-consistency of the model provides a relationship between the resistance parameter and the volume fraction of the solid phase. A volume, or an ensemble, averaging of the total stress gives the bulk properties and an expression for the relative (bulk) viscosity of the suspension. The viscosity expression reduces to the Einstein limit for dilute suspensions and agrees well with empirical formulas from the literature in the semi-dilute and concentrated regimes. Since the model is based on a single particle and its average interaction with the other particles is isotropic, no normal stress differences can be predicted. A possible method of addressing this problem is provided in the paper.  相似文献   

6.
Numerical simulations have been undertaken for the benchmark problem of fountain flow present in injection-mold filling. The Finite Element Method (FEM) is used to provide numerical results for both cases of planar and axisymmetric domains under steady-state conditions. The Herschel–Bulkley model of viscoplasticity is used, which reduces with appropriate modifications to the Bingham, power-law and Newtonian models. The present results extend previous ones regarding the shape of the front, which is essential in correctly capturing the flow field. In particular the centreline front position is found as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The pressures from the simulations have been used to compute the excess pressure losses in the system (front pressure correction or exit correction). Both shear-thinning and shear-thickening lead to more extended front positions relative to the Newtonian values, which are 0.895 for the planar case and 0.835 for the axisymmetric one. Viscoplasticity leads also to more extended front positions as the dimensionless yield stress goes from zero (Newtonian behaviour) to higher values of the yield stress. In both cases of non-Newtonian behaviour, the front tends to follow the development of the fully developed Poiseuille velocity profile, which tends towards a plug-like profile at the extreme cases of non-Newtonianness. The front pressure (exit) correction increases monotonically with the decrease in the power-law index and the increase in the dimensionless yield stress.  相似文献   

7.
Numerical simulations have been undertaken for the benchmark problem of annular extrudate swell present in pipe extrusion and parison formation in blow molding. The finite element method (FEM) is used to provide numerical results for different inner/outer diameter ratios κ under steady-state conditions. The Herschel-Bulkley model of viscoplasticity is used with the Papanastasiou regularization, which reduces with appropriate parameter choices to the Bingham–Papanastasiou, power-law and Newtonian models. The present results provide the shape of the extrudate, and in particular the thickness and diameter swells, as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The pressures from the simulations have been used to compute the excess pressure losses in the system (exit correction). While shear-thinning leads to reduced swelling relative to the Newtonian values for all κ-values, the opposite is true for shear-thickening fluids, which exhibit considerable swelling. Viscoplasticity leads to decreased extrudate swell as the dimensionless yield stress goes from zero (Newtonian behaviour) to an asymptotic value of fully plastic behaviour. The exit correction decreases to zero with a decrease in the power-law index to zero and an increase in the dimensionless yield stress to its asymptotic limit. However, the decrease is not monotonic: for power-law fluids it has maxima in the range of power-law indices between 0.8 and 0.6, while for viscoplastic fluids it has maxima around Bingham number values of 5.  相似文献   

8.
Experimental results on the flow enhancement during flow of clay slurries (n = 0.15) through oscillating pipes are compared with theoretical predictions. The agreement is fairly good, especially in the oscillating boundary layer flow regime. Flow enhancement of order 108 was found with the slurries used.  相似文献   

9.
A semi-empirical spectrum model is proposed to describe the experimental data of the steady shear properties of a Shengli waxy crude oil near its gel point, where sophisticated structural effects become apparent due to the existence of waxy crystals in the crude oil. The model, consisting of a time spectrum, can well fit the steady shear viscosities of the waxy crude oil over the whole experimental shear rate region from 10-4 to 102 s- 1. Two other experiments on complex fluids reported recently in the literature are also well described by this model demonstrating the applicability and accuracy of the model.  相似文献   

10.
A one layer model of laminar non-Newtonian fluids (Ostwald-de Waele model) past a semi-infinite flat plate is revisited. The stretching and the suction/injection velocities are assumed to be proportional to x1/(1−2n) and x−1, respectively, where n is the power-law index which is taken in the interval . It is shown that the boundary-layer equations display both similarity and pseudosimilarity reductions according to a parameter γ, which can be identified as suction/injection velocity. Interestingly, it is found that there is a unique similarity solution, which is given in a closed form, if and only if γ=0 (impermeable surface). For γ≠0 (permeable surface) we obtain a unique pseudosimilarity solution for any 0≠γ≥−((n+1)/3n(1−2n))n/(n+1). Moreover, we explicitly show that any pseudosimilarity solution exhibits similarity behavior and it is, in fact, similarity solution to a modified boundary-layer problem for an impermeable surface. In addition, the exact similarity solution of the original boundary-layer problem is used, via suitable transverse translations, to construct new explicit solutions describing boundary-layer flows induced by permeable surfaces.  相似文献   

11.
12.
13.
This paper deals with the development of a new second gradient model, its numerical implementation and its validation. In order to remedy to the spurious mesh dependency of the post localized computation enhanced models incorporating some internal length are necessary. These models are very time consuming. In this paper we present a simplified theory within the framework of constrained micromorphic models involving only the micro volumetric strain. Provided the use of an additional penalty term in the numerical treatment, this model is quite efficient to regularize problems modelling behaviors exhibiting plastic volumetric strain such as the ones of geomaterials. More over this model is notably less time consuming than the more general ones.  相似文献   

14.
The shear dependence of the bulk viscosities of two structurally different types of perfluoropolyether fluids was determined by two different techniques. The first involved direct measurement in a high shear Couette viscometer, the second utilized the time-temperature superposition principle to establish master curves from viscosity determinations at low shear rates and temperature; the results are comparable. Both fluids begin to show non-Newtonian behavior at shear rates above 10,000 s–1.  相似文献   

15.
In the light of a new interpretation, we have studied the end effects for highly elastic-constant viscosity fluids commonly called Boger fluids. In terms of entrance effect only, the presence of primary normal-stress differences in absence of shear-thinning properties results in a decrease of the entrance correction below the Couette (Newtonian) value, whereas the total end correction can be substantially increased by an amount which is strongly dependent on the Weissenberg number or recoverable shear.  相似文献   

16.
A phenomenological model for dispersed systems which exhibit complex rheological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to different kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus functionG of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic ordersn=m=2.  相似文献   

17.
A new micromechanics constitutive model for pure dilatant transformation plasticity of structure ceramics is proposed in this paper. Based on the thermodynamics, micromechanics and microscalet→m transformation mechanism analysis of the TZP and PSZ ZrO2-containing ceramics, an analytic expressions of the Helmholtz and complementary free energy of the constitutive element for the case of pure dilatant transformation is derived for the first time in a self-consistent manner. By the analysis of energy dissipation in the forward and reverse transformations, the micromechanics constitutive law is derived in the framework of Hill-Rice's internal variable constitutive theory. The project is supported by the National Natural Science Foundation of China.  相似文献   

18.
An analysis of the dynamic behavior of a magnetorheological (MR) fluid is given in terms of a vectorial internal variable describing the change of the macroscopic average of the relative position vector of suspensions. Under the restriction of the second law, the constitutive equations of the MR fluid for stress, heat flux, magnetization and internal variable can be derived. The related issue of dissipative and energy transfer mechanisms is treated at some length. Studies on the steady shear flow indicate the direction of the internal variable is independent of shear rate. The Bingham-type constitutive equation for shear stress is obtained and endowed with a new meaning. The pressure-driven flow, another significant flow type for the design of MR devices, is also analyzed to study the plug flow region and the relationship between yield stress and flow rate. In addition, a criterion of flow initiated by the applied shear force is proposed based on the saturation of the internal variable and the condition of the equilibrium of forces in the fluid and solid regions. Received April 08, 1997  相似文献   

19.
20.
A new apparent viscosity function for shear thickening fluids is proposed, contemplating the three characteristic regions typically exhibited by these materials: slight shear thinning at low shear rates, followed by a sharp viscosity increase over a threshold shear rate value (critical shear rate), and a subsequent pronounced shear thinning region at high shear rates. The proposed function has a continuous derivative, making it appropriate in numerical simulations. Moreover, the function is shown to provide an excellent fit to several independent experimental data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号