首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal and mechanical properties of collagen/chitosan blends before and after UV irradiation have been investigated using thermal analysis and mechanical (Instron) techniques. Comparisons were made with the thermal and mechanical properties of both collagen and chitosan films. Air-dried collagen, chitosan and collagen/chitosan films were exposed to UV irradiation (wavelength 254 nm) for different time intervals. Thermal properties of collagen/chitosan blends depend on the composition of the blend and are not significantly altered by UV irradiation.Mechanical properties such as ultimate tensile strength and ultimate percentage of elongation were much better for collagen films than for collagen/chitosan films. The results have shown that the mechanical properties of the blends were greatly affected by the duration of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the blend. Increasing UV irradiation leads to an increase in Young's modulus of the collagen/chitosan blend.  相似文献   

2.
In this paper, the results regarding the influence of UV-irradiation with 254?nm wavelength on the surface and mechanical properties of hyaluronic acid, hyaluronic acid/collagen and hyaluronic acid/collagen/chitosan mixtures are presented. For this study, thin films were prepared by solvent evaporation from solution of HA and mixtures made from HA/Coll and HA/Coll with 30% addition of chitosan. The surface properties of films were investigated by AFM and using contact angle measurements, allowing the calculation of surface free energy and its components. Mechanical properties of films made of biopolymeric blends before and after UV-irradiation have been investigated by mechanical testing machine.  相似文献   

3.
Effects of solar radiation on collagen and chitosan films   总被引:3,自引:0,他引:3  
Photo-aging and photo-degradation are the deleterious effect of chronic exposure to sun light of many materials made of natural polymers. The resistance of the products on the action of solar radiation is very important for material scientists. The effect of solar radiation on two natural polymers: collagen and chitosan as well as collagen/chitosan blends in the form of thin films has been studied by UV-Vis and FTIR spectroscopy. It was found that UV-Vis spectra, which characterise collagen and collagen/chitosan films, were significantly altered by solar radiation. FTIR spectra of collagen and collagen/chitosan films showed that after solar irradiation the positions of amide A and amide I bands were shifted to lower wavenumbers. There was not any significant alteration of chitosan UV-Vis and FTIR spectra after solar radiation. In the condition of the experiment chitosan films were resistant to the action of solar radiation. The effect of solar UV radiation in comparison to artificial UV radiation has been discussed.  相似文献   

4.
Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.  相似文献   

5.
Gibbs energy, enthalpy, and entropy of mixing in binary blends of chitosan with ter‐copolyamide 6/66/610 at ambient conditions have been determined over the entire concentration range using thermodynamic cycle based on dissolution of individual polymers and their blends of different composition in a common solvent – formic acid. Experimental procedure included stepwise equilibrium vapor sorption of glacial formic acid on the cast films and isothermal microcalorimetry of dissolution of these films in liquid glacial formic acid at 25 °C. Formic acid appeared to be a very good solvent for individual polymers and their blends. Flory‐Huggins interaction parameter determined from sorption isotherms was negative and varied from ?2.56 to ?1.79 depending upon blend composition. The enthalpies of dissolution of individual polymers and their blends were strongly exothermic and varied from ?200 to ?40 Joule/g. Independent thermodynamic cycles for Gibbs free energy and enthalpy remarkably revealed similar trends in concentration dependence of different thermodynamic functions of mixing between chitosan and copolyamide. At high chitosan content, the binary blend is characterized by large and negative values of Gibbs free energy, enthalpy, and entropy of mixing that provide high polymer compatibility. On the contrary, at high copolyamide content the blends are incompatible and are characterized by positive values of enthalpy, entropy, and Gibbs free energy of mixing. Such complicated thermodynamic behavior is the result of the superposition of strong molecular interactions (H‐bonds) between polymers in the blend and isothermal fusion of copolyamide crystallites. Thermodynamic analysis correlates well with the data obtained by polarized microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2603–2613, 2007  相似文献   

6.
Organic conductive composite films have been synthesized by electropolymerization of pyrrole in the presence of chitosan and p-toluene sulfonic acid sodium salt. The obtained conductive polymer composite films have been characterized by Fourier Transform Infrared spectroscopy, dynamic mechanical analysis, scanning electron microscopy, X-ray diffraction and conductivity measurements. The prepared polymer composite films had the amorphous structure and exhibited the enhanced conductivity and mechanical properties due to the presence of chitosan in the composite films.  相似文献   

7.
Summary: The origins of the thermal and mechanical properties of chitosan and poly(vinyl alcohol) (PVA) with inter- and intra-hydrogen bonds were investigated systematically by using X-ray, DSC, positron annihilation and viscoelastic measurements. Based on their individual properties, the characteristics of the blend films were estimated in relation to their morphology and mechanical properties as a function of chitosan content. The characteristics of the blend films were also analyzed in terms of the deviation from a simple additive rule of chitosan and PVA content. These results suggested that the miscibility of chitosan and PVA could be ensured by entanglement of the amorphous chain segments of chitosan and PVA. Further detailed analysis revealed that the chitosan content on the film surface is higher than that of the admixture content of chitosan after elongation, although the chitosan and PVA chains were crystallized independently. The elongation could be achieved for the blend films whose PVA content was higher than 50% and the drawn blend films were transparent. Thus, it may be expected that sufficiently entangled meshes formed between chitosan and PVA amorphous chains within the film, the PVA content being higher than 50%, were maintained under the elongation process.  相似文献   

8.
In this study, novel biodegradable materials were successfully generated, which have excellent mechanical properties in air during usage and storage, but whose structure easily disintegrates when immersed in water. The materials were prepared by melt blending poly(L ‐lactic acid) (PLLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) with a small amount of oligomeric poly(aspartic acid‐co‐lactide) (PAL) as a degradation accelerator. The degradation behavior of the blends was investigated by immersing the blend films in phosphate‐buffered saline (pH = 7.3) at 40 °C. It was shown that the PAL content and composition significantly affected morphology, mechanical properties, and hydrolysis rate of the blends. It was observed that the blends containing PAL with higher molar ratios of L ‐lactyl [LA]/[Asp] had smaller PBAT domain size, showing better mechanical properties when compared with those containing PAL with lower molar ratios of [LA]/[Asp]. The degradation rates of both PLLA and PBAT components in the ternary blends simultaneously became higher for the blends containing PAL with higher molar ratios of [LA]/[Asp]. It was confirmed that the PLLA component and its decomposed materials efficiently catalyze the hydrolytic degradation of the PBAT component, but by contrast that the PBAT component and its decomposed materials do not catalyze the hydrolytic degradation of the PLLA component in the blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

9.
The present paper deals with the studies on the polyethylene-polybutene-1 blend system and characterizes two issues, namely: (i) to present a method for preparing reinforced composite polymeric materials; (ii) to investigate the factors affecting the mechanical properties in the non-compatible crystalline blends. In order to investigate the structure-property relationship of highly oriented thin films of polyblends in the whole range of composition, the morphologies have been characterized using electron microscopy. The corresponding changes in the mechanical and thermal properties have also been studied. It is demonstrated that the observed anomolous behaviour in mechanical properties of the blends with the composition is mainly due to the resulting changes in the type of dispersion of the phases and their morphologies.  相似文献   

10.
Mixed solutions of chitosan and polymers with different chain rigidities (polyvinyl alcohol and methyl cellulose) in 2% acetic acid, at various component ratios, were studied viscometrically. The compatibility of the components in solutions and in the solid phase was assessed, and the mechanical characteristics of films prepared from these blends were determined.  相似文献   

11.
医用壳聚糖膜的制备和性能研究   总被引:9,自引:0,他引:9  
研究了壳聚糖膜的制备方法和性能。探讨了壳聚糖浓度、甘油和戊二醛用量对壳聚糖膜性能的影响,并考察了膜的体外降解过程。结果表明w=.02的壳聚糖溶液成膜效果较好;甘油和戊二醛能王著改善壳聚糖膜的力学性能和尺寸稳定性能;溶茼酶-林格氏液中浸泡40d后膜的降解率为41.98%。满足引导组织再生材料的基本要求。该膜作为一种潜在的生物医用材料,将具有较广阔的应用前景。  相似文献   

12.
Chitosan has been used to form miscible, biodegradable blends with hydrophilic synthetic polymers as PVA and PEO. Characterisation of the blends by DSC, IR and microscopy analysis was made giving much attention to possible interactions of molecular polar group in the polymer chains. PVA/chitosan are found to be amorphous in the whole range of composition having one glass transition temperature. Molecular interactions in the pair of polymers are connected with amide group of chitosan and hydroxyl groups of PVA. PEO/chitosan blends stay amorphous up to 0.2 weight fraction of PEO. For a higher amount of PEO that polymer crystallises forming a spherulite crystalline structure. We correlate the overall kinetics of crystallisation and melting behaviour of solid, semicrystalline blends PEO/chitosan in the form of thin films for a set of PEO species of different blend composition with a morphological structure of the blends. Negative values of the Flory-Huggins interaction parameter due to specific interactions by hydrogen bonding through ether group of PEO and hydroxyl group of chitosan were evaluated. Amide groups do not participate in the molecular interaction between PEO and chitosan molecules. Avrami equation was applied to describe kinetics of crystallisation of pure PEO and PEO/chitosan blends of various compositions.  相似文献   

13.
In order to improve the properties of chitosan and obtain new fully biodegradable materials, blends of poly(l-lactide) (PLLA) and chitosan with different compositions were prepared by precipitating out PLLA/chitosan from acetic acid-DMSO mixtures with acetone. The blends were characterized by Fourier transform infrared analysis (FTIR), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), 13C solid-state NMR and Wide-angle X-ray diffraction (WAXD). FTIR and XPS results showed that intermolecular hydrogen bonds existed between two components in the blends, and the hydrogen bonds were mainly between carbonyls of PLLA and amino groups of chitosan. The melting temperatures, cold crystallization temperatures and crystallinity of the PLLA component decreased with the increase in chitosan content. Blending chitosan with PLLA suppressed the crystallization of the PLLA component. Although the crystal structure of PLLA component was not changed, the crystallization of the blends was affected because of the existence of hydrogen bonds between two components, which was proved by WAXD results.  相似文献   

14.
Systems based on starch and chitosan blends with synthetic polymers and cellulose derivatives (poly(ethylene oxide) and methyl cellulose of various molecular masses, PA, and ethylene-vinyl acetate copolymers containing different amounts of vinyl acetate groups) have been studied. The thermodynamic characteristics of the formation of blends have been determined. The rheological properties characterizing formation of blends from melts have been investigated. The biocorrosion ability of the blends after their use has been estimated by various methods. The concentration dependences of the thermodynamic functions of mixing of components (change in the Gibbs energy, enthalpy, and entropy) change sign in a wide composition range, indicating the complexity of mixing of rigid-chain natural polysaccharides with synthetic polymers. The rheological study of blends in which starch or chitosan plays the role of a biodegradation modifier shows that they are non-Newtonian fluids. The absolute values of viscosity and the activation parameters of melts increase with the content of polysaccharide in the system. The values of viscosity correspond to those typical for commercially processable polymers. The blends under study are biodegradable in a wet and water-soil medium with the content of the natural component being in the range 15–30 wt %.  相似文献   

15.
甲壳胺-明胶共混物的研究   总被引:24,自引:0,他引:24  
甲壳胺 明胶共混物的研究莫秀梅(华东理工大学高分子材料系上海200237)关键词甲壳素,明胶,共混物,红外光谱甲壳胺是甲壳素的脱乙酰基产物,即将甲壳素C2上的乙酰基脱去变成氨基,因此在甲壳胺分子侧链上增加了一个活泼氨基,从而易于化学改性或共混改性....  相似文献   

16.
Abstract

Starch, one of the most inexpensive and most readily available of all natural polymers, can be processed into thermoplastic materials only in the presence of plasticizers and under the action of heat and shear. Poor water resistance and low strength are limiting factors for the use of materials manufactured only from starch, and hence the modification of starch is often achieved by blending aliphatic polyesters. In this review, the literatures concerning the properties of various blends of starch and aliphatic polyesters have been summarized. The biodegradable rates of blends can be controlled to a certain extent depending on the constitutions of blends, and the mechanical properties of blends are close to those of traditional plastics such as polyethylene and polystyrene. The reduction of their sensitivity to humidity makes these materials suitable for the production of biodegradable films, injection-molded items, and foams.  相似文献   

17.
In this study, novel smart drug release films were prepared by blending chitosan with polyethylene glycol methyl ether (PEGME), also named as methoxy polyethylene glycol (mPEG), for controlled drug release applications. The polymeric films were characterized by Fourier transform infra-red for functional groups analysis, scanning electron microscopy for morphology and X-ray photoelectron spectroscopy for chemical and surface analysis followed by mechanical and thermal analysis. The mechanical properties showed that with the addition of PEGME (40%), the tensile strength and elongation break were increased up to 34.14 MPa and 26.40%, respectively as compared to the controlled sample (without PEGME). The developed biodegradable films were tested for Metformin hydrogen chloride release ability at a particular rate in phosphate buffer saline solution at pH 7.4. The results showed that chitosan/PEGME blends could be employed for controlled drug release and other biomedical applications.  相似文献   

18.
Different ratios of nylon 11/chitosan blending films were prepared by solution casting method. The strength of the hydrogen bond in the blending films is weakened after addition of chitosan and spherulite growth is restricted as the ratio of chitosan increases. Sea-island morphology could be observed once the concentration of chitosan in the blends was more than 50%. Blending films are characterized by FTIR (Fourier transform infrared spectroscopy), X-ray, and scanning electron microscopy (SEM) and the biodegradability is also investigated. The extent of biodegradability for nylon 11/chitosan blending films is strongly affected by the addition percentage of chitosan.  相似文献   

19.
Thin nanocomposite films of thermoplastic starch, chitosan and cellulose nanofibers (bacterial cellulose or nanofibrillated cellulose) were prepared for the first time by solvent casting of water based suspensions of the three polysaccharides. The role of the different bioploymers on the final properties (thermal stability, transparency, mechanical performance and antimicrobial activity) of the films was related with their intrinsic features, contents and synergic effects resulting from the establishment of interactions between them. Thermoplastic starch displays an important role on the thermal stability of the films because it is the most stable polysaccharide; however it has a negative impact on the mechanical performance and transparency of the films. The addition of chitosan improves considerably the transparency (up to 50 % transmittance for 50 % of chitosan, in respect to the amount of starch), mechanical performance and antimicrobial properties (at least 25 % of chitosan and no more than 10 % of cellulose nanofibers are required to observe bacteriostatic or bactericidal activity) but decrease their thermal stability. The incorporation of cellulose nanofibers had the strongest positive impact on the mechanical properties of the materials (increments of up to 15 and 30 MPa on the Young′s modulus and Tensile strength, respectively, for films with 20 % of BC or NFC). Nonetheless, the impact in thermal stability and mechanical performance of the films, promoted by the addition of chitosan and cellulose nanofibres, respectively, was higher than the expected considering their percentage contents certainly because of the establishment of strong and complex interactions between the three polysaccharides.  相似文献   

20.
Powder blends of LDPE with cellulose, ethyl cellulose, starch, chitin, and chitosan have been prepared under shear deformation in a rotor disperser at different initial-component ratios. The composition of powder fractions is identical to the original composition of the blends. The studied polymer blends demonstrate high mechanical characteristics. X-ray diffraction analysis and DSC studies show that the blending of LDPE with polysaccharides under shear deformations results in changes in the polymer structure and leads to a decrease of their degree of crystallinity. The maximum intensity of mold fungi growth is observed in starch-LDPE (50: 50, wt/wt) and chitin-LDPE (50: 50, wt/wt) blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号