首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
New simultaneous iteration techniques are developed for solving the generalized eigenproblem Ax=λBx, where A and B are real symmetric matrices and B is positive definite. The approach is to minimize the generalized Rayleigh quotient in some sense over several independent vectors simultaneously. In particular, each new vector iterate is formed from a linear combination of current iterates and correction vectors that are derived from either gradient or conjugate-gradient techniques. A Ritz projection or simultaneous iteration process is used to accelerate convergence. For one of the gradient versions, convergence and asymptotic rates of convergence are established. Also, some numerical experiments are reported that demonstrate the convergence behavior of these methods.  相似文献   

2.
3.
Riemannian symmetric spaces have the following two classes of spaces as their natural generalizations: (A) the class ofGS-spaces (generalized symmetric Riemannian spaces); (B) the class ofGPS-spaces (generalized pointwise symmetric Riemannian spaces). A result due to O. Kowalski says that the relation between the two classes is (A) (B), the inclusion being strict. In the present paper the author proves that in dimension 5 the class (A) and the class (B) must coincide. Consequently the explicit classification of five-dimensional GPS-spaces is obtained.  相似文献   

4.
The paper derives and investigates the Jacobi methods for the generalized eigenvalue problem A x = λ B x, where A is a symmetric and B is a symmetric positive definite matrix. The methods first “normalize” B to have the unit diagonal and then maintain that property during the iterative process. The global convergence is proved for all such methods. That result is obtained for the large class of generalized serial strategies from Hari and Begovi? Kova? (Trans. Numer. Anal. (ETNA) 47, 107–147, 2017). Preliminary numerical tests confirm a high relative accuracy of some of those methods, provided that both matrices are positive definite and the spectral condition numbers of Δ A AΔ A and Δ B BΔ B are small, for some nonsingular diagonal matrices Δ A and Δ B .  相似文献   

5.
A Higham matrix is a complex symmetric matrix A=B+iC, where both B and C are real, symmetric and positive definite. We prove that, for such A, the growth factor in Gaussian elimination is less than 3. Moreover, a slightly larger bound holds true for a broader class of complex matrices A=B+iC, where B and C are Hermitian and positive definite. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we present a normwise perturbation theory for the regular generalized eigenproblem Ax = λBx, when λ is a semi-simple and finite eigenvalue, which departs from the classical analysis with the chordal norm [9]. A backward error and a condition number are derived for a choice of flexible measure to represent independent perturbations in the matrices A and B. The concept of optimal backward error associated with an eigenvalue only is also discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
The symmetric procrustes problem   总被引:3,自引:0,他引:3  
The following symmetric Procrustes problem arises in the determination of the strain matrix of an elastic structure: find the symmetric matrixX which minimises the Frobenius (or Euclidean) norm ofAX — B, whereA andB are given rectangular matrices. We use the singular value decomposition to analyse the problem and to derive a stable method for its solution. A perturbation result is derived and used to assess the stability of methods based on solving normal equations. Some comparisons with the standard, unconstrained least squares problem are given.  相似文献   

8.
In this paper we construct three infinite series and two extra triples (E8 and ) of complex matrices B, C, and A=B+C of special spectral types associated to Simpson's classification in Amer. Math. Soc. Proc. 1 (1992) 157 and Magyar et al. classification in Adv. Math. 141 (1999) 97. This enables us to construct Fuchsian systems of differential equations which generalize the hypergeometric equation of Gauss-Riemann. In a sense, they are the closest relatives of the famous equation, because their triples of spectral flags have finitely many orbits for the diagonal action of the general linear group in the space of solutions. In all the cases except for E8, we also explicitly construct scalar products such that A, B, and C are self-adjoint with respect to them. In the context of Fuchsian systems, these scalar products become monodromy invariant complex symmetric bilinear forms in the spaces of solutions.When the eigenvalues of A, B, and C are real, the matrices and the scalar products become real as well. We find inequalities on the eigenvalues of A, B, and C which make the scalar products positive-definite.As proved by Klyachko, spectra of three hermitian (or real symmetric) matrices B, C, and A=B+C form a polyhedral convex cone in the space of triple spectra. He also gave a recursive algorithm to generate inequalities describing the cone. The inequalities we obtain describe non-recursively some faces of the Klyachko cone.  相似文献   

9.
This paper is devoted to the study of reverse generalized Bessel matrix polynomials (RGBMPs) within complex analysis. This study is assumed to be a generalization and improvement of the scalar case into the matrix setting. We give a definition of the reverse generalized Bessel matrix polynomials Θn(A; B; z), , for parameter (square) matrices A and B, and provide a second‐order matrix differential equations satisfied by these polynomials. Subsequently, a Rodrigues‐type formula, a matrix recurrence relationship, and a pseudo‐generating function are then developed for RGBMPs. © 2013 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons, Ltd.  相似文献   

10.
11.
We investigate how to adapt the Q-Arnoldi method for the case of symmetric quadratic eigenvalue problems, that is, we are interested in computing a few eigenpairs \((\lambda ,x)\) of \((\lambda ^2M+\lambda C+K)x=0\) with MCK symmetric \(n\times n\) matrices. This problem has no particular structure, in the sense that eigenvalues can be complex or even defective. Still, symmetry of the matrices can be exploited to some extent. For this, we perform a symmetric linearization \(Ay=\lambda By\), where AB are symmetric \(2n\times 2n\) matrices but the pair (AB) is indefinite and hence standard Lanczos methods are not applicable. We implement a symmetric-indefinite Lanczos method and enrich it with a thick-restart technique. This method uses pseudo inner products induced by matrix B for the orthogonalization of vectors (indefinite Gram-Schmidt). The projected problem is also an indefinite matrix pair. The next step is to write a specialized, memory-efficient version that exploits the block structure of A and B, referring only to the original problem matrices MCK as in the Q-Arnoldi method. This results in what we have called the Q-Lanczos method. Furthermore, we define a stabilized variant analog of the TOAR method. We show results obtained with parallel implementations in SLEPc.  相似文献   

12.
Asymmetric scaling of a square matrixA 0 is a matrix of the formXAX –1 whereX is a nonnegative, nonsingular, diagonal matrix having the same dimension ofA. Anasymmetric scaling of a rectangular matrixB 0 is a matrix of the formXBY –1 whereX andY are nonnegative, nonsingular, diagonal matrices having appropriate dimensions. We consider two objectives in selecting a symmetric scaling of a given matrix. The first is to select a scalingA of a given matrixA such that the maximal absolute value of the elements ofA is lesser or equal that of any other corresponding scaling ofA. The second is to select a scalingB of a given matrixB such that the maximal absolute value of ratios of nonzero elements ofB is lesser or equal that of any other corresponding scaling ofB. We also consider the problem of finding an optimal asymmetric scaling under the maximal ratio criterion (the maximal element criterion is, of course, trivial in this case). We show that these problems can be converted to parametric network problems which can be solved by corresponding algorithms.This research was supported by NSF Grant ECS-83-10213.  相似文献   

13.
Given C*-algebras A and B, we generalize the notion of a quasi-homomorphism from A to B in the sense of Cuntz by considering quasi-homomorphisms from some C*-algebra C to B such that C surjects onto A and the two maps forming the quasi-homomorphism agree on the kernel of this surjection. Under an additional assumption, the group of homotopy classes of such generalized quasi-homomorphisms coincides with KK(A, B). This makes the definition of the Kasparov bifunctor slightly more symmetric and provides more flexibility in constructing elements of KK-groups. These generalized quasi-homomorphisms can be viewed as pairs of maps directly from A (instead of various C’s), but these maps need not be *-homomorphisms.  相似文献   

14.
The matrix completion problem is easy to state: let A be a given data matrix in which some entries are unknown. Then, it is needed to assign “appropriate values” to these entries. A common way to solve this problem is to compute a rank-k matrix, B k , that approximates A in a least squares sense. Then, the unknown entries in A attain the values of the corresponding entries in B k . This raises the question of how to determine a suitable matrix rank. The method proposed in this paper attempts to answer this question. It builds a finite sequence of matrices \(B_{k}, k = 1, 2, \dots \), where B k is a rank-k matrix that approximates A in a least squares sense. The computational effort is reduced by using B k-1 as starting point in the computation of B k . The ability of B k to serve as substitute for A is measured with two objective functions: a “training” function that measures the distance between the known part of A and the corresponding part of B k , and a “probe” function that assesses the quality of the imputed entries. Watching the changes in these functions as k increases enables us to find an optimal matrix rank. Numerical experiments illustrate the usefulness of the proposed approach.  相似文献   

15.
A heuristic argument and supporting numerical results are given to demonstrate that a block Lanczos procedure can be used to compute simultaneously a few of the algebraically largest and smallest eigenvalues and a corresponding eigenspace of a large, sparse, symmetric matrixA. This block procedure can be used, for example, to compute appropriate parameters for iterative schemes used in solving the equationAx=b. Moreover, if there exists an efficient method for repeatedly solving the equation (A–I)X=B, this procedure can be used to determine the interior eigenvalues (and corresponding eigenvectors) ofA closest to .  相似文献   

16.
LetA 1 andA 2 be two symmetric matrices of ordern×n. According to Yuan, there exists a convex combination of these matrices which is positive semidefinite, if and only if the functionxR n max {x T A 1 x,x T A 2 x} is nonnegative. We study the case in which more than two matrices are involved. We study also a related question concerning the maximization of the minimum eigenvalue of a convex combination of symmetric matrices.This research was partially supported by Dirección General de Investigación Científica y Técnica (DGICYT) under Project PB92-0615.  相似文献   

17.
The quaternion algebraB[j] over a commutative ringB with 1 defined byS. Parimala andR. Sridharan is generalized in two directions: (1) the ringB may be non-commutative with 1, and (2)j 2 may be any invertible element (not necessarily –1). LetG={} be an automorphism group ofB of order 2, andA={b inB| (b)=b}. LetB[j] be a generalized quaternion algebra such thataj (a) for eacha inB. It will be shown thatB is Galois (for non-commutative ring extensions) overA which is contained in the center ofB if and only ifB[j] is Azumaya overA. Also,A[j] is a splitting ring forB[j] such thatA[j] is Galois overA. Moreover, we shall determine which automorphism group ofA[j] is a Galois group.  相似文献   

18.
In this paper, we study nonlinear optimization problems involving eigenvalues of symmetric matrices. One of the difficulties in solving these problems is that the eigenvalue functions are not differentiable when the multiplicity of the function is not one. We apply the \({\mathcal {U}}\)-Lagrangian theory to analyze the largest eigenvalue function of a convex matrix-valued mapping which extends the corresponding results for linear mapping in the literature. We also provides the formula of first-and second-order derivatives of the \({\mathcal {U}}\)-Lagrangian under mild assumptions. These theoretical results provide us new second-order information about the largest eigenvalue function along a suitable smooth manifold, and leads to a new algorithmic framework for analyzing the underlying optimization problem.  相似文献   

19.
This note summarizes an investigation of harmonic Ritz values to approximate the interior eigenvalues of a real symmetric matrix A while avoiding the explicit use of the inverse A?1. We consider a bounded functional ψ that yields the reciprocals of the harmonic Ritz values of a symmetric matrix A. The crucial observation is that with an appropriate residual s, many results from Rayleigh quotient and Rayleigh–Ritz theory naturally extend. The same is true for the generalization to matrix pencils (A, B) when B is symmetric positive definite. These observations have an application in the computation of eigenvalues in the interior of the spectrum of a large sparse matrix. The minimum and maximum of ψ correspond to the eigenpairs just to the left and right of zero (or a chosen shift). As a spectral transformation, this distinguishes ψ from the original harmonic approach where an interior eigenvalue remains at the interior of the transformed spectrum. As a consequence, ψ is a very attractive vehicle for a matrix‐free, optimization‐based eigensolver. Instead of computing the smallest/largest eigenvalues by minimizing/maximizing the Rayleigh quotient, one can compute interior eigenvalues as the minimum/maximum of ψ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Summary We study block matricesA=[Aij], where every blockA ij k,k is Hermitian andA ii is positive definite. We call such a matrix a generalized H-matrix if its block comparison matrix is a generalized M-matrix. These matrices arise in the numerical solution of Euler equations in fluid flow computations and in the study of invariant tori of dynamical systems. We discuss properties of these matrices and we give some equivalent conditions for a matrix to be a generalized H-matrix.Research supported by the Graduiertenkolleg mathematik der Universität Bielefeld  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号