首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Non-isothermal crystallization of isotactic poly(4-methyl-pentene-1) (P4MP1) is studied by differential scanning calorimeter (DSC), and kinetic parameters such as the Avrami exponent and the kinetic crystallization rate (Z c) are determined. From the cooling and melting curves of P4MP1 at different cooling rates, the crystalline enthalpy increases with the increasing cooling rate, but the degree of crystalline by DSC measurement shows not much variation. Degree of crystalline of P4MP1 calculated by wide angle X-ray diffraction pattern shows the same tendency with crystalline enthalpy, indicating that re-crystallization occurs when samples heated above the second glass transition temperature of P4MP1. By Jeziorny analysis, n 1 value suggests that mainly spherulites’ growth at 2.5 K min−1 transforms into a mixture mode of three-dimensional and two-dimensional space extensions with further increasing cooling rate. In the secondary crystallization process, n 2 values indicate that the secondary crystallization is mainly the two-dimensional extension of the lamellar crystals formed during the primary crystallization process. The rates of the crystallization, Z c and t 1/2 both increase obviously with the increase of cooling rate, especially at the primary crystallization stage. By Mo’s method, higher cooling rate should be required in order to obtain a higher degree of crystallinity at unit crystallization time.  相似文献   

3.
用差示量热扫描热分析仪(DSC)测试了不同降温速率下聚2-吡咯烷酮(PPD)样品的温度-热焓曲线,样品黏均分子量为2.2×10~4,熔点为272℃。采用Jeziorny法、Ozawa法和莫志深法分析了PPD的非等温结晶动力学。结果表明,在给定降温速率范围内,Ozawa法不适用于描述PPD的非等温结晶动力学过程,Jeziorny法只适用于描述PPD的主结晶阶段,而莫志深法能很好地描述整个结晶过程。Jeziorny法处理结果表明,PPD主结晶阶段的Avrami指数(n)为1.68~1.78,晶体生长为准二维生长。莫志深法处理结果表明,在单位结晶时间里达到某一相对结晶度所需的降温速率随相对结晶度的增加而增大。用Kissinger方程求得PPD的非等温结晶活化能为-31.9kJ/mol。  相似文献   

4.
5.
β-nucleated long chain branched (LCB) polypropylene random copolymers (PPRs) were prepared via reactive extrusion by introducing β nucleating agent (NA), dicumyl peroxide (DCP) and various contents of 1, 6-Hexanediol diacrylate (HDDA) into PPR. Results of Fourier infrared spectroscopy (FTIR) and the rheological properties demonstrate the existence of LCB polypropylene. Mechanical properties including impact strength, tensile strength and elongation at break were studied. The crystal structure, morphology and crystallization behavior were investigated via wide-angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and differential scanning calorimetry (DSC). Non-isothermal crystallization kinetics using the Jeziorny method was also studied. The results show an increased LCB degree with increasing HDDA amount. For the sample with a moderate LCB level, synergistic toughening effect of NA and LCB is achieved without deterioration of yield strength or elongation at break, partially because of its higher β-phase content and much smaller spherulite size. It exhibits the minimum values of Tc and Zc1, and the maximum values of t1/2 and n1 in the primary stage of crystallization, regardless of the cooling rate, indicating a slower crystallization rate and more complicated nucleation and crystal growth model.  相似文献   

6.
使用3,3 ′,4,4′-联苯四酸二酐( s-BPDA),1,3,-双(4-氨基苯氧基)苯(TPER)和苯酐(PA)反应合成了一种半结晶型聚酰亚胺.根据DSC记录的不同速率下降温所得到的结晶放热曲线,分别采用Jeziorny、Ozawa及奠志深提出的方法对其非等温结晶行为进行了研究.发现由Jeziorny方法分析得到的...  相似文献   

7.
一种研究聚合物非等温结晶动力学的方法   总被引:17,自引:2,他引:17  
作者基于多年对聚合物结晶动力学方面研究的工作积累,联合Avrami方程和Ozawa方程,提出了一种研究聚合物非等温结晶动力学的新方法.该方法既克服了使用Ozawa方程所获得的数据点过少,常常出现非线性,不能获得可靠的动力学参数的缺点,又克服了使用经Jeziorny修正的Avrami方程所获得的表观Avrami指数无法准确预测非等温过程成核生长机理的缺点.该方法已成功用于多种聚合物体系,被国内外学者引用数百次,已成为研究聚合物非等温结晶动力学一种有效方法.  相似文献   

8.
PLLA-PEG共聚物的非等温结晶行为   总被引:2,自引:1,他引:1  
采用熔融共聚法制备PLLA-PEG嵌段共聚物, 用WAXD和DSC方法研究其结晶行为, 并用Avrami方程的Jeziorny修正分析了非等温结晶动力学行为. 结果表明, PLLA结晶明显, 而PEG结晶难以观察到, PEG的柔性能促进PLLA结晶. PEG分子量的增加和投料量的增加都能使得结晶温度升高, 结晶度增大, 结晶速度加快.  相似文献   

9.
用差示扫描量热分析研究了间规聚苯乙烯(sPS)的非等温结晶及其动力学,并分别用Ozawa和Jeziorny两种方法来处理sPS的非等温结晶数据.结果表明,在25~40℃/min的冷却速率范围内,sPS的半结晶时间随冷却速率增大而呈指数式下降,sPS非等温结晶过程遵循Ozawa动力学方程,但不符合Jeziorny方法中的Avrami动力学方程.所得到的sPS非等温结晶Avrami指数n在36~41之间,高于等温结晶时的n值  相似文献   

10.
The glass-transition temperature and non-isothermal crystallization of poly(trimethylene terephthalate)/poly(ethylene 2,6-naphthalate) (PTT/PEN) blends were investigated by using differential scanning calorimeter (DSC). The results suggested that the binary blends showed different crystallization and melting behaviors due to their different component of PTT and PEN. All of the samples exhibited a single glass-transition temperature, indicating that the component PTT and PEN were miscible in amorphous phase. The value of Tg predicted well by Gordon-Taylor equation decreased gradually with increasing of PTT content. The commonly used Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of non-isothermal crystallization. The kinetic parameters suggested that the PTT content improved the crystallization of PEN in the binary blend. The crystallization growth dimension, crystallization rate and the degree of crystallinity of the blends were increased with the increasing content of PTT. The effective activation energy calculated by the advanced iso-conversional method developed by Vyazovkin also concluded that the value of Ea depended not only on the system but also on temperature, that is, the binary blend with more PTT component had higher crystallization ability and the crystallization ability is increased with increasing temperature. The kinetic parameters U* and Kg were also determined, respectively, by the Hoffman-Lauritzen theory.  相似文献   

11.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

12.
The nonisothermal crystallization kinetics was investigated by differential scanning calorimetry for the nylon 6/graphene composites prepared by in situ polymerization. The Avrami theory modified by Jeziorny, Ozawa equation, and Mo equation was used to describe the nonisothermal crystallization kinetics. The analysis based on the Avrami theory modified by Jeziorny shows that, at lower cooling rates (at 5, 10, and 20 K/min), the nylon 6/graphene composites have lower crystallization rate than pure nylon 6. However, at higher cooling rates (at 40 K/min), the nylon 6/graphene composites have higher crystallization rate than pure nylon 6. The values of Avrami exponent m and the cooling crystallization function F(T) from Ozawa plots indicate that the mode of the nucleation and growth at initial stage of the nonisothermal crystallization may be as follows: two‐dimensional (2D), then one‐dimensional (1D) for all samples at 5–10 °C/min; three‐dimensional (3D) or complicated than 3D, then 2D and 1D at 10–20 and 20–40 °C/min. The good linearity of the Mo plots indicated that the combined approach could successfully describe the crystallization processes of the nylon 6 and nylon 6/graphene composites. The activation energies (ΔE) of the nylon 6/graphene composites, determined by Kissinger method, were lower than those of pure nylon 6. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1381–1388, 2011  相似文献   

13.
根据DSC测得的数值,采用Jeziorny ,Вороховский和由作者实验室提出的一种新方法研究了十二烷基取代聚噻吩(P3DDT) 和十八烷基取代聚噻吩(P3ODT) 的非等温结晶过程,并应用Kissinger 法求取其结晶表观活化能ΔE,探讨了不同烷基取代基团对结晶过程的影响.P3DDT 应用Jeziorny 和Вороховский法描述时在结晶后期均发生偏离现象,而作者提出的新方法描述时则得到较好的线性关系.求得P3DDT 的ΔE 为184-79kJ/mol,P3ODT 的ΔE 为246-93kJ/mol,比较结晶表观活化能数值可知,P3DDT 比P3ODT 更易结晶.  相似文献   

14.
Poly (vinylidiene fluoride) (PVDF)/poly (methyl methacrylate) (PMMA)/cellulose nanocrystal (CNC) nanocomposites were prepared by solution blending. Non-isothermal crystallization of PVDF/PMMA (70/30) blend and its composites was investigated using differential scanning calorimetry. It was found that the addition of CNCs played a positive role in both the crystallization rate and crystallization percentage. The addition of CNCs increased the initial crystallization temperature, peak crystallization temperature, and crystalline enthalpy. The Avrami index indicated that CNCs did not change the crystallization mechanism; while other parameters derived from Jeziorny theory and Mo's method, including Z c , F(t), and α, further verified the positive role played by CNCs.  相似文献   

15.
The non-isothermal crystallization kinetics of three functionalized polypropylenes (PPs; polypropylenes-g-acrylic acid [PP-g-AA], polypropylenes-g-glycidyl methacrylate [PP-g-GMA], polypropylenes-g-maleic anhydride [PP-g-MAH]) at different cooling rates were investigated by differential scanning calorimetry, using the Jeziorny method, Ozawa method, and Mo method. The result showed that Mo method can adequately describe the non-isothermal crystallization kinetics of pure PP and functionalized PPs, and at a given relative crystallinity, the crystallization rate obtained using Mo method followed an order of PP-g-AA > PP-g-GMA > PP > PP-g-MAH. The crystallization activation energy for these samples was calculated using Kissinger's method, which indicated that the introduction of monomers had a confinement effect on the motion of PP chains.  相似文献   

16.
Attapulgite (AT)‐reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution‐casting technique. The nonisothermal crystallization behaviors of PVA bulk and PVA/AT nanocomposites have been investigated by differential scanning calorimetry (DSC). It has been found that the uniformly dispersed AT nanorods in the matrix have great influence on the glass transition temperature and crystallization behavior of PVA matrix. The Jeziorny method has been employed to analyze the DSC data. The results show that Jeziorny method could describe this system very well. Comparing with the PVA bulk, PVA/AT nanocomposites have higher crystallinity Xt, shorter semicrystallization time t1/2, and higher crystallization rate constant Zc. It can be concluded that AT can be used as an effective nucleating agent and has effects on the growth of crystallites in the crystallization process of PVA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 534–540, 2006  相似文献   

17.
Crystalline structures, nonisothermal crystallization behavior and surface folding free energy of polypropylene (PP)/poly(ethylene‐co‐vinyl acetate) (EVA) blend‐based organically modified montmorillonite (OMMT) nanocomposites were investigated by use of wide angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Nonisothermal crystallization kinetic analysis was performed using Avrami equation modified by Jeziorny as well as combined Avrami‐Ozawa method. Surface folding free energy and activation energy for PP and nanocomposite samples were also determined employing Hoffman‐Lauritzen's and Vyazovkins's approaches, respectively. The results obtained from transmission electron microscopy (TEM) showed that presence of EVA, which attracts most of the layered silicates, reduces number density of heterogeneous nuclei in the matrix and as a consequence, decreases the nucleation rate. Incorporation of EVA, PP‐g‐MA and OMMT results in a decrease of the chain surface folding free energy level. It was shown that although, OMMT acts as a barrier against the PP macromolecular motion but interestingly, it increases the overall crystallization rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 674–684, 2009  相似文献   

18.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

19.
Isotactic polypropylenes (iPP) samples were incorporated with two β-nucleating agents (NT-A and NT-C), respectively, and their non-isothermal crystallization and subsequent melt behaviors were investigated by means of differential scanning calorimeter. Jeziorny, Ozawa, and Mo methods were used to analyze non-isothermal crystallization kinetics of pure iPP and β-nucleated iPP samples. The activation energies (ΔE) of non-isothermal crystallization were calculated by Kissinger method. And the nucleation activities were calculated according to the Dobreva method. It is found that the crystallization temperature decreases and the crystallization rate increases with increasing cooling rate. The crystallization temperature and crystallization rate of nucleated iPP are higher than those of pure iPP. The order of ΔE is NT-A/iPP > pure iPP > NT-C/iPP. NT-C is more efficient than NT-A as a β-nucleating agent. But the non-isothermal crystallization kinetics of α- and β-phases cannot be determined separately. The present results should be considered with caution.  相似文献   

20.
The morphology of crystals, isothermal and non-isothermal crystallization of poly(methylene terephthalate) (PMT) have been investigated by using polarized optical microscopy and differential scanning calorimeter (DSC). The POM photographs displayed only several Maltese cross at the beginning short time of crystallization indicating that some spherulites had been formed. The crystal cell belonged to the Triclinic crystal systems and the cell dimensions were calculated from the WAXD pattern. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallization. The Ozawa theory was also used to analyze the primary stage of non-isothermal crystallization. The Avrami exponents n were evaluated to be in the range of 2-3 for isothermal crystallization, and 3-4 for non-isothermal crystallization. The Ozawa exponents m were evaluated to be in the range of 1-3 for non-isothermal crystallization in the range of 135-155 °C. The crystallization activation energy was calculated to be −78.8 kJ/mol and −94.5 kJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius’ formula and the Kissinger’s methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号