首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
A new method based on the use of a headspace autosampler in combination with a GC equipped with a programmable temperature vaporizer (PTV) and an MS detector has been developed for the screening and quantitative determination of trihalomethanes (THMs) in different aqueous matrices. The use of headspace generation to introduce the sample has the advantage that no prior sample treatment is required, thus minimizing the creation of analytical artifacts and the errors associated with this step of the analytical process. The PTV inlet used was packed with Tenax-TA. The injection mode was solvent vent, in which the analytes are retained in the hydrophobic insert packing by cold trapping, while the water vapour is eliminated through the split line. This allows rapid injection of the sample in splitless mode, very low detection limits being achieved without the critical problem of initial sample bandwidth. The capillary column used allowed rapid separations with half-height widths ranging from 1.68 s (chloroform) to 0.66 s (bromoform). The GC run time was 7.3 min. The use of mass spectrometry allows the identification and quantification of the analytes at the low ppt level. The S/N ratio was at least 10-fold higher when the SIM mode was used in data acquisition as compared to the scan mode. The proposed method is extremely sensitive, with detection limits ranging from 0.4 to 2.6 ppt.  相似文献   

2.
In the present work we propose the combined use of a derivatization reaction within the vial of a headspace sampler with a programmed temperature vaporizer (PTV) inlet in the solvent vent mode as a new methodology for obtaining an increase in sensitivity in headspace-gas chromatography (HS-GC) for the analysis of sparingly volatile compounds. As test analytes the following chlorophenols were used: 2-chlorophenol (2CP), 2,4-dichlorophenol (24DCP), 4-chloro-3-methylphenol (4C3MP) and 2,4,6-trichlorophenol (246TCP). The derivatization reaction was carried out with acetic anhydride because it can be carried out in situ in aqueous medium. In the programmed temperature vaporizer inlet, three different liners, one of them empty and the others with materials of different trapping strengths (glass wool and Tenax-TA), were compared. The best results were obtained when an empty liner was used, with better repeatability and S/N ratios. In the case of the liner filled with Tenax-TA, a considerable lack of repeatability was observed, this being attributed to interactions between the derivatized compounds and the adsorbent. The proposed methodology affords very low limits of detection, in the range of a few ng/L for all the compounds, with good precision and accuracy values.  相似文献   

3.
A sensitive method for the fast analysis of filbertone in spiked olive oil samples is presented. The applicability of a headspace (HS) autosampler in combination with a gas chromatograph (GC) equipped with a programmable temperature vaporizer (PTV) and a mass spectrometric (MS) detector is explored. A modular accelerated column heater (MACHTM) was used to control the temperature of the capillary gas chromatography column. This module can be heated and cooled very rapidly, shortening total analysis cycle times to a considerable extent. The proposed method does not require any previous analyte extraction, filtration and preconcentration step, as in most methods described to date. Sample preparation is reduced to placing the olive oil sample in the vial. This reduces the analysis time and the experimental errors associated with this step of the analytical process. By using headspace generation, the volatiles of the sample are analysed without interference by the non-volatile matrix, and by using injection in solvent-vent mode at the PTV inlet, most of the compounds that are more volatile than filbertone are purged and the matrix effect is minimised. Use of a liner packed with Tenax-TA? allowed the compound of interest to be retained during the venting process. The limits of detection and quantification were as low as 0.27 and 0.83 μg/L, respectively, and precision (measured as the relative standard deviation) was 5.7%. The method was applied to the determination of filbertone in spiked olive oil samples and the results revealed the good accuracy obtained with the method.  相似文献   

4.
A methodology based on the coupling of a headspace autosampler with a GC and a MS detector operating in SIM mode has been developed for the determination of volatile organic compounds (THMs and BTEX) in soils. The GC device used is equipped with a programmable temperature vaporizer (PTV) packed with Tenax-TA® to introduce the samples (the injection mode used was solvent vent), and a modular accelerated column heater (MACH™) to control column temperature. The proposed measurement procedure reduces the sample pretreatment step to a minimum. Combined use of solvent vent injection mode and mass spectrometry detection allows a highly sensitive method to be proposed, with limits of detection of the order of ng/kg for all the target compounds. Furthermore, the capillary column used allows rapid separations of compounds in less than 4.60 min, affording a very short total analysis cycle time of 9 min.  相似文献   

5.
A simple procedure for the determination of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), ethyl butyl ether (EBE), tert-amyl methyl ether (TAME), benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using headspace (HS) solid-phase microextraction (HS-SPME) was developed. The analysis was carried out by gas chromatography (GC) equipped with flame ionization detector (FID) and 100% dimethylpolysiloxane fused capillary column. A 2 Plackett-Burman design for screening and a central composite design (CCD) for optimizing the significant variables were applied. Fiber type, extraction temperature, sodium chloride concentration, and headspace volume were the significant variables. A 65 microm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 10 degrees C, 300 g/l, and 20 ml of headspace (in 40 ml vial) were respectively chosen for the best extraction response. An extraction time of 10 min was enough to extract the ethers and BTEX. The relative standard deviation (R.S.D.) for the procedure varied from 2.6 (benzene) to 8.5% (ethylbenzene). The method detection limits (MDLs) found were from 0.02 (toluene, ethylbenzene, and xylenes) to 1.1 microg/l (MTBE). The optimized method was applied to the analysis of the rivers, marinas and fishing harbors surface waters from Gipuzkoa (North Spain). Three sampling were done in 1 year from June 2002 to June 2003. Toluene was the most detected analyte (in 90% of the samples analyzed), with an average concentration of 0.56 microg/l. MTBE was the only dialkyl ether detected (in 15% of the samples) showing two high levels over 400 microg/l that were related to accidental fuel spill.  相似文献   

6.
Experimental tie-line data have been determined for the ternary system water + methyl tert-butyl ether + tert-amyl methyl ether and the quaternary systems water + methanol + methyl tert-butyl ether + tert-amyl methyl ether, and water + ethanol + methyl tert-butyl ether + tert-amyl methyl ether at 25°C and ambient pressure. The experimental results have been satisfactorily correlated using the modified UNIQUAC and extended UNIQUAC models with ternary and quaternary, in addition to binary parameters.  相似文献   

7.
A sensitive method is presented for the fast screening and determination of residual class 1 solvents (1,1-dichloroethene, 1,2-dichloroethane, 1,1,1-trichloroethane, carbon tetrachloride and benzene) in pharmaceutical products. The applicability of a headspace (HS) autosampler in combination with GC equipped with a programmed temperature vaporizer (PTV) and a MS detector is explored. Different injection techniques were compared. The benefits of using solvent vent injection instead of split or splitless-hot injection for the measurement of volatile compounds are shown: better peak shapes, better signal-to-noise ratios, and hence better detection limits. The proposed method is extremely sensitive. The limits of detection ranged from 4.9 ppt (benzene) to 7.9 ppt (1,2-dichloroethane) and precision (measured as the relative standard deviation) was equal to or lower than 12% in all cases. The method was applied to the determination of residual solvents in nine different pharmaceutical products. The analytical performance of the method shows that it is appropriate for the determination of residual class 1 solvents and has much lower detection limits than the concentration limits proposed by the International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use. The proposed method achieves a clear improvement in sensitivity with respect to conventional headspace methods due to the use of the PTV.  相似文献   

8.
A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management. High flow rates into the PTV inlet of 750mLmin(-1)during thermal desorption are ca. a factor of ten greater than typically used. To improve resolution and retention time stability, the thermal desorption and PTV inlet programming procedure includes three steps to prevent water from entering the analytic column while effectively transferring the analytes into the GC system. The instrumentation and procedures provide virtually complete and consistent transfer of analytes collected from ambient air into the GC evidenced by recovery of seven replicates of four internal standards of 90.7+/-4.0-120+/-23% (mean+/-95% confidence interval, CI). Retention time based compound identification is facilitated by low retention time variability with an average 95% CI of 0.024min for sixteen replicates of eight standards. Procedure details and performance metrics as well as ambient sampling results are presented.  相似文献   

9.
A new protocol for the simultaneous determination of methyl tert-butyl ether (MTBE); its main degradation products: tert-butyl alcohol (TBA) and tert-butyl formate (TBF); other gasoline additives, oxygenate dialkyl ethers: ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME) and diisopropyl ether (DIPE); aromatics: benzene, toluene, ethylbenzene and xylenes (BTEX) and other compounds causing odour events such as dicyclopentadiene (DCPD) and trichloroethylene (TCE) in soils has been developed. On the basis of US Environmental Protection Agency (EPA) method 5035A, a fully automated closed-system purge-and-trap coupled to gas chromatography/mass spectrometry (P&T-GC/MS) was optimised and permitted to detect microg/kg concentrations in solid matrices avoiding losses of volatile compounds during operation processes. Parameters optimised were the sampling procedure, sample preservation and storage, purging temperature, matrix effects and quantification mode. Using 5 g of sample, detection limits were between 0.02 and 1.63 microg/kg and acceptable method precision and accuracy was obtained provided quantification was performed using adequate internal standards. Soil samples should be analysed as soon as possible after collection, stored under -15 degrees C for not longer than 7 days if degradation products have to be analysed. The non-preservative alternative (empty vial) provided good recoveries of the most analytes when freezing the samples up to 7 day holding time, however, if biologically active soil are analysed the preservation with trisodium phosphate dodecahydrate (Na(3)PO(4).12H(2)O or TSP) is strongly recommended more than sodium bisulphate (NaHSO(4)). The method was finally applied to provide threshold and background levels of several gasoline additives in a point source and in sites not influenced by gasoline spills. The proposed method provides the directions for the future application on real samples in current monitoring programs at gasoline pollution risk sites where till now little monitoring data for MTBE in soils are available.  相似文献   

10.
A direct aqueous injection-gas chromatography/mass spectrometry (DAI-GC/MS) method for trace analysis of 24 volatile organic compounds (VOCs) in water samples is presented. The method allows for the simultaneous quantification of benzene, toluene, ethyl benzene, and xylenes (BTEX), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), as well as a variety of chlorinated methanes, ethanes, propane, enthenes and benzenes. Applying a liquid film polyethylene glycol or a porous layer open tubular (PLOT) divinylbenzene GC capillary column to separate the water from the VOCs, volumes of 1-10 microL aqueous sample are directly injected into the GC. No enrichment or pretreatment steps are required and sample volumes as low as 100 microL are sufficient for accurate quantification. Method detection limits determined in natural groundwater samples were between 0.07 and 2.8 microg/L and instrument detection limits of <5 pg were achieved for 21 out of the 24 evaluated VOCs. DAI-GC/MS offers both good accuracy and precision (relative standard deviations 相似文献   

11.
气相色谱-质谱法测定饮用水中的卤乙酸   总被引:6,自引:0,他引:6  
汪昆平  邓荣森  李伟民  王涛 《色谱》2006,24(1):26-29
参照美国EPA Method 552.3方法中的液-液微萃取、酸化甲醇衍生化技术,以高纯水代替甲基叔丁基醚(MTBE)做溶剂配制标准贮备液,采用气相色谱/质谱联用技术对饮用水中的卤乙酸(HAAs)进行测定。结果表明:在所确立的检测条件下,样品分析时间短,内标、HAAs组分峰在谱图上能够得到很好的分离。低、中、高3个浓度水平的加标水样的HAAs回收率为82%~103%。该方法的检测限:二氯乙酸为0.72 μg/L、三氯乙酸为0.44 μg/L。用水做溶剂配制的标准贮备液在4 ℃条件下贮存时,贮存时间为2个月。  相似文献   

12.
A sensitive method is presented for the fast analysis of three aromatic and six polycyclic aromatic hydrocarbons (biphenyl, 3-methylbiphenyl, 4-methylbiphenyl, fluorene, phenanthrene, fluoranthene, pyrene, 1,2-benz(a)anthracene and chrysene) in gasoline samples. The applicability of a GC device equipped with a programmable temperature vaporizer (PTV) and an MS detector is explored. Additionally, a modular accelerated column heater (MACH) was used to control the temperature of the capillary gas chromatography column. This module can be heated and cooled very rapidly, making total analysis cycle times very short. The proposed method does not require any previous analyte extraction and preconcentration step, as in most methods described to date. Sample preparation is reduced to simply diluting the gasoline samples in methanol. This reduces the experimental errors associated with this step of the analytical process. By using sampling injection in the solvent vent mode, and through choice of a suitable temperature, the lightest major components of the gasoline were removed. Moreover, use of a liner packed with Tenax-TA allowed the compounds of interest to be retained during the process. This working strategy could be extended to other groups of compounds through the choice of different venting temperatures. In this way, a large part of the gasoline components are eliminated, the life of the liner is prolonged, and it is possible to inject sample volumes that will not saturate the chromatographic column. The limits of detection ranged from 0.61 microg/L (pyrene) to 6.1 microg/L (biphenyl), and precision (measured as the relative standard deviation) was equal to or lower than 7.3%. The method was applied to the determination of analytes in gasoline samples and the results obtained can be considered highly satisfactory.  相似文献   

13.
李婷  汤智  洪武兴 《分析化学》2012,(3):391-396
建立了含油脂食品中17种邻苯二甲酸酯的分散固相萃取-气相色谱-质谱法检测方法。奶茶样品经乙腈-甲基叔丁基醚(9∶1,V/V)提取后,提取液用MAS-PAEC分散固相萃取管进行净化。调味包样品经乙腈(正己烷饱和)-甲基叔丁基醚(19∶1,V/V)提取2次后,提取液用CNW分散固相萃取管进行净化。采用基质匹配标准外标法进行定量分析。结果表明,奶茶中17种邻苯二甲酸酯的加标回收率为82.2%~125.4%;相对标准偏差小于16.5%;方法检出限为100~200μg/L。调味包中17种邻苯二甲酸酯的加标回收率为70.9%~115.5%;相对标准偏差小于9.8%;方法检出限为400~800μg/L。本方法快速、精确、简易、廉价、稳定,可应用于含油脂食品中17种邻苯二甲酸酯的实际检测分析。  相似文献   

14.
建立了纸张中的20种芳香胺的分散固相萃取/气相色谱-三重四极杆串联质谱分析方法。纸张中的偶氮染料于(70±2)℃经预处理后还原为芳香胺,向反应后的悬浮液中先加入4 mL 10 mol/L氢氧化钠溶液,将pH值由弱酸性调至碱性,再加入0.5 mL的3内标(氘代萘、2,4,5-三氯苯胺和氘代蒽)工作溶液、10 mL的叔丁基甲醚,最后加入15 g无水硫酸钠除水,振摇40 min萃取芳香胺。萃取液经分散固相萃取试剂盒(d-SPE)进一步净化、离心后,取上层清液以气相色谱-三重四极杆串联质谱法(GC-MS/MS),在多反应离子监测(MRM)模式下检测,内标法定量。目标物在各自浓度范围内线性关系良好(r~20.99),在10、20、50 ng/mL 3个加标水平下的回收率为80.7%~128%,相对标准偏差(RSDs)为0.79%~6.5%,检出限(LOD)为0.05~2.1 ng/mL,定量下限(LOQ)为0.18~5.5 ng/mL。该方法简便快捷,灵敏度高,可用于纸张中芳香胺的快速检测。  相似文献   

15.
The presence of alkyl ether fuel oxygenates in drinking water supplies has raised public health concerns because of possible adverse health effects from chronic exposure to these compounds. To enable large exposure studies exploring possible relationships between chronic exposure to alkyl ether fuel oxygenates and health effects, we developed an improved analytical method, using headspace solid-phase microextraction coupled with capillary gas chromatography and mass spectrometry. This method quantifies trace levels of methyl tertiary-butyl ether, ethyl tertiary-butyl ether, di-isopropyl ether, and tertiary-amyl methyl ether in tap water. The method achieves detection limits of less than 0.025 microg/L for all analytes and linear ranges of three orders of magnitude in the measurement of the alkyl ether fuel oxygenates in 5-mL tap water samples. The relative percentage of recoveries of the alkyl ether fuel oxygenates ranged from 97% to 105%. The relative standard deviation ranged from 2% to 6%. Methyl tertiary-butyl ether was detected in samples of tap water taken from geographically diverse regions of the United States. The improved throughput and sensitivity of this method will enable large epidemiologic field studies of the prevalence and magnitude of exposure to alkyl ether fuel oxygenates in the general population.  相似文献   

16.
Halonitromethanes (HNMs) are one of the most cytotoxic and genotoxic classes found among the unregulated disinfection by-products formed by the reaction of chemical disinfectants with natural organic matter in water. Typical methods used to determine these compounds in water (mainly trichloronitromethane) are based on the Environmental Protection Agency (EPA) method 551.1 using liquid–liquid extraction. A fast and straightforward method for the determination of the nine HNMs in water has been developed using a static headspace (HS) coupled with gas chromatography–mass spectrometry (GC-MS). Important parameters controlling headspace extraction were optimised to obtain the highest sensitivity: 250 μL of methyl tert-butyl ether (as a chemical modifier) and 6 g of anhydrous sodium sulphate were added to the water sample; an oven temperature of 80 °C and an equilibration time of 20 min were also selected. The addition of a chemical modifier favoured the volatilisation of all HNMs, increasing their signals up to approximately four times. Under optimum conditions, the method developed provides limits of detection between 0.03 and 0.60 μg/L and a relative standard deviation of ∼6.0%. The developed method was validated and then compared with the reference method EPA 551.1 for the analysis of tap and swimming pool water. A good agreement in the results was observed, which corroborated the good performance of the proposed HS-GC-MS method.  相似文献   

17.
A method based on simplified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction followed by large-injection volume-fast gas chromatography and mass spectrometry detection has been developed for the determination of trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane and bromoform) and BTEX (benzene, toluene, ethylbenzene and xylenes) in soil samples.The simplified version of QuEChERS used meets the requirements of the “green chemistry” and provides reliable results with high sample throughput, low solvent consumption, little labour and the use of materials commonly employed in laboratories. The GC device used is equipped with a programmable temperature vaporizer (PTV), with a liner packed with Tenax-TA®. Using the solvent-vent mode, the PTV allows the injection of large volumes of sample, affording an improvement in the sensitivity of the method. The chromatographic conditions used here allowed the separation of the compounds in less than 5.50 min. Good linearity was obtained for all the target compounds, with highly satisfactory repeatability and reproducibility values. The limits of detection were in the 0.2 to 15 μg kg−1 range. The method was validated by the analysis of two certified reference materials.  相似文献   

18.
The prevalence of water disinfection byproducts in drinking water supplies has raised concerns about possible health effects from chronic exposure to these compounds. To support studies exploring the relation between exposure to trihalomethanes (THMs) and health effects, we have developed an automated analytical method using headspace solid-phase microextraction coupled with capillary gas chromatography and mass spectrometry. This method quantitates trace levels of THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) and methyl tertiary-butyl ether in tap water. Detection limits of less than 100 ng/L for all analytes and linear ranges of three orders of magnitude are adequate for measuring the THMs in tap water samples tested from across the United States. THMs are stable for extended periods in tap water samples after quenching of residual chlorine and buffering to pH 6.5, thus enabling larger epidemiologic field studies with simplified sample collection protocols.  相似文献   

19.
建立了高效液相色谱-串联质谱法(HPLC-MS/MS)测定蜂胶原胶中氯霉素残留量的分析方法。样品用叔丁基甲醚溶解,氢氧化钠溶液去除黄酮类等杂质,叔丁基甲醚层加正己烷降低氯霉素的溶解度,再用乙酸钠缓冲液反萃氯霉素,反萃溶液调至碱性后用乙酸乙酯萃取,经浓缩、复溶和过滤后,进行测定。采用甲醇-水(65∶35,体积比)为流动相,反相Atlantis T_3色谱柱进行液相色谱分离,电喷雾负离子电离(ESI-),多反应监测模式(MRM)进行检测,内标法定量。结果表明,氯霉素在0.1~5.0μg/L范围内线性关系良好;方法的定量下限(S/N≥10)为0.3μg/kg;在0.3、0.6、3.0μg/kg加标水平下,氯霉素的平均回收率为97.3%~103%,相对标准偏差为4.8%~6.4%。该法的灵敏度、准确度和精密度均符合兽药残留检测的要求。  相似文献   

20.
A fully automated method for the determination of triclosan (TCS), its derivative methyl triclosan (MeTCS) and six parabens (esters of 4-hydroxybenzoic acid) including branched and linear isomers of propyl (i-PrP and n-PrP) and butyl paraben (i-BuP and n-BuP) in sewage water samples is presented. The procedure includes analytes enrichment by microextraction by packed sorbent (MEPS) coupled at-line to large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS). Under optimised conditions, compounds were extracted from 2 mL samples, adjusted at pH 3, using a C18 MEPS-sorbent. Adsorbed analytes were eluted directly into the Programmable Temperature Vaporizer (PTV) injector of the chromatograph with 2×25 μL of ethyl acetate. They were quantified using standard solutions in ultrapure water submitted to the same sample enrichment process as real sewage water samples. After signal normalisation using isotopic labelled species as internal surrogates, no differences were noticed among the extraction efficiency for sewage and ultrapure water; moreover, the proposed method reported lineal calibration curves from 0.1 to 10 ng mL(-1), relative standard deviations (%RSD) between 2 and 7.1% and limits of detection (LODs) varying from 0.001 to 0.015 ng mL(-1) in ultrapure water and from 0.02 to 0.59 ng mL(-1) in the most complex sample (raw wastewater).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号