首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 986 毫秒
1.
Titanocene–bis(trimethylsilyl)ethyne complexes [Ti(η5-C5Me4R)22-Me3SiCCSiMe3)], where R=benzyl (Bz, 1a), phenyl (Ph, 1b) and p-fluorophenyl (FPh, 1c), thermolyse at 150–160°C to give products of double C---H activation [Ti(η5-C5Me4Bz){η34-C5Me3(CH2)(CHPh)}] (2a), [Ti(η5-C5Me4Bz){η34-C5Me2Bz(CH2)2}] (2a′), [Ti(η5-C5Me4Ph){η34-C5Me2Ph(CH2)2}] (2b), and [Ti(η5-C5Me4FPh){η34-C5Me2FPh(CH2)2}] (2c). In the presence of 2,2,7,7-tetramethylocta-3,5-diyne (TMOD) the thermolysis affords analogous doubly tucked-in compounds bearing one η34-allyldiene and one η5-C5Me4R ligand having TMOD attached by its C-3 and C-6 carbon atoms to the vicinal methylene groups adjacent to the substituent R (R=Bz (3a), Ph (3b), and FPh (3c)). Compound 3a is smoothly converted into air-stable titanocene dichloride [TiCl25-C5Me2Bz(CH2CH(t-Bu)CH=CHCH(t-Bu)CH2)}(η5-C5Me4Bz)] (4a) by a reaction with hydrogen chloride. Yields in both series of doubly tucked-in complexes decrease in the order of substituents: BzPh>FPh. Crystal structures of 1c, 2a, 2b, and 3b have been determined.  相似文献   

2.
The silver(I) oxide mediated reactions of the gold(III) dichloride complex [{C6H3(CH2

uCl2] 2a with thiosalicylic or salicylic acid gives the respective complexes [{C6H3(CH2


)-2}] 3a (X=S) or 6b (X=O), containing chelating thiosalicylate or salicylate dianion ligands. X-ray studies show that for the thiosalicylate system, the thiosalicylate sulfur atom is trans to the N,N-dimethylamino group, whereas in the structure of the salicylate complex, it is the carboxylate group that is trans to NMe2. Both complexes show puckered metallacycles in the solid state. Electrospray mass spectrometry (ESMS) shows strong [M+H]+ and [2M+H]+ ions for both the gold-thiosalicylate and -salicylate complexes, and these ions possess a high stability towards cone voltage-induced fragmentation. ESMS was also used to identify a minor impurity, the bis(cyclo-aurated) cationic complex [A

Me2)-2-(OMe)-5}2]+ in the starting dihalide complex 2a and in the product 3a. This complex can be formed by reaction of Me4N[AuCl4] with 2 equivalents of the organomercury precursor [Hg{C6H3(CH2NMe2)-2-(OMe)-5}Cl]. The biological (antitumour, antimicrobial and antiviral) activities are also reported, and these reveal the complexes have moderate to high anti-tumour, antibacterial and antifungal activity.  相似文献   

3.
Vibrational Spectra and Force Constants of W(OCH3)6, Mo(OCH3)6, and [Sb(CH3)4][Sb(OCH3)6] The infrared and Raman spectra of the monomeric hexamethoxides of Tungsten and Molybdenum and of the ionic compound [Me4Sb]+[Sb(OMe)6]? (prepared from [Sb(OMe)5]2 and Me4SbOMe; Me = CH3) are recorded and interpreted on the basis of C3i symmetry. The force fields of W(OMe)6 and [Sb(OMe)6]? are calculated using the same basis set of force constants. Both W? O- and Sb? O- stretching force constants are identical (2.56 N/cm), however the other parts of the valence force field are markedly different.  相似文献   

4.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes. VIII. Dinuclear Cobalt Complexes with the Dianion of Bis(cyclopentadienyl)methane and Bis(tetramethylcyclopentadienyl)dimethylsilane as Bridging Ligands The dinuclear cobalt complex [CH2(C5H4)2][Co(CO)2]2 ( 4 ) which is obtained from [Co(CO)4I] ( 2 ) and Li2[CH2(C5H4)2] ( 3 ) in 75% yield reacts with PMe3, PiPr3, P2Me4, Me2PCH2CH2PMe2 and (EtO)2POP(OEt)2, to the compounds 5–9 substituting one CO ligand per cobalt atom. Oxidative addition of CH3I to [CH2(C5H4)2][Co(CO)(PMe3)]2 ( 5 ) leads to the formation of the dinuclear cobalt(III) complex [CH2(C5H4)2][Co(COCH3)(PMe3)I]2 ( 11 ). The reaction of 4 with iodide generates [CH2(C5H4)2][Co(CO)I2]2 ( 12 ) which with PMe3, P(OMe)3, P(OiPr)3, and CNMe reacts under CO substitution to [CH2(C5H4)2][Co(L)I2]2 ( 13–16 ) and with PMe2H to {[CH2(C5H4)2][Co(PMe2H)3]2}I4 ( 17 ). The electrophilic addition reactions of NH4PF6 and CH3I to [CH2(C5H4)2][Co(PMe3)2]2 ( 20 ) produce the complex salts {[CH2(C5H4)2][CoR(PMe3)2]2}X2 ( 21 : R = H; 22 : R = CH3). From 22a (X = I) and LiCH3 the dinuclear tetramethyldicobalt compound [CH2(C5H4)2] · [Co(CH3)2(PMe3)]2 ( 23 ) is obtained which further reacts, via the intermediate 24 , to the chiral complex {[CH2(C5H4)2] · [CoCH3(PMe3)P(OMe)3]2}(PF6)2 ( 25 ). The reaction of 20 with C2(CN)4 and E- or Z-C2H2(CO2Me)2 gives the olefin(trimethylphosphine) cobalt(I) derivatives 26 und 27 . The synthesis of the dinuclear compounds 31–38 with [Me2Si(C5Me4)2]2? as the bridging unit is also described.  相似文献   

5.
A series of homodinuclear Pt compounds containing the anionic, potentially terdentate NCN ligand (NCN=[C6H3(Me2NCH2)2-2,6]) or its 4-ethynyl derivative were prepared. The two platinum centres are linked together in two different fashions: (i) directly linked by an ethynyl or diethynylphenyl group (head-to-head) and (ii) indirectly bonded by a ethynyl- or butadiynyl-linked bis-NCN ligand (tail-to-tail). The reaction of the head-to-head σ,σ′-ethynylide complex {Pt}CC{Pt} ({Pt}=[Pt(C6H3{CH2NMe2}2-2,6)]+) with [CuCl]n yields {Pt}Cl and [Cu2C2]n, while with [Cu(NCMe)4][BF4] a Cu(I) bridged complex was formed: [(η2-{Pt}CC{Pt})2Cu][BF4]. The results of cyclic voltammetry experiments reveal that both connection modes of the two platinum centres lead to electrochemically independent Pt–NCN units. The X-ray crystal structure analysis of the neutral, tail-to-tail bridging butadiyne bis-NCNH ligand [C6H3(CH2NMe2)-1,3-(CC)-5]2 is reported.  相似文献   

6.
Reduction of methyl-substituted titanocene dichlorides bearing pendant double bonds [TiCl25-C5Me4(CH2CMeCH2)}2] (1) and [TiCl25-C5Me4(SiMe2(CH2)2CHCH2)}2] (2) with magnesium yielded diamagnetic Ti(IV) compound [Ti{η115-C5Me3(CH2)(CH2CH(Me)CH2)}{η5-C5Me4(CH2C(Me)CH2)}] (4) and paramagnetic Ti(III) compound [Ti{η5-C5Me4(SiMe2CH2CHCHMe)}(μ-η3151(Ti:Mg){C5Me3(CH2)(SiMe2CHCHCMe)})Mg(OC4H8)2] (6), respectively. The reluctance of titanocene intermediates to undergo intramolecular cyclization to cyclopentadienyl-ring-tethered titanacycles (as typically observed) can be explained by a shortness of the 2-methylallyl group and steric hindrance of its double bond in the former case and, in the latter case, by an attack of magnesium on the titanocene intermediate, faster than cyclization reactions. The crystal structures of 4 and 6 were determined by single-crystal X-ray diffraction.  相似文献   

7.
Novel η1-vinyl complexes of the type Cp(CO)(L)FeC(OMe)C(R)R′ (R = R′ = H, Me; R = H, R′ = Me; L = Me3P, Ph3P) are obtainied via methylation of the acyl complexes Cp(CO)(L)FeC(O)R (R = Me, Et, i-Pr) with MeOSO2F and subsequent deprotonation of the resulting carbene complexes [Cp(CO)(L)FeC(OMe)R]SO3F with the phosphorus ylide Me3PCH2. The same procedure can be applied for the synthesis of the pentamethylcyclopentadienyl derivative C5Me5(CO)(Me3P)FeC(OMe)CH2, while treatment of the hydroxy or siloxy carbene complexes [Cp(CO)(L)FeC(OR)Me]X (R = H, Me3Si; X = SO3CF3) with Me3CH2 results in the transfer of the oxygen bound electrophile to the ylidic carbon. Some remarkable spectroscopic properties of the new complexes are reported.  相似文献   

8.
The reaction of (C5Me5)2Th(CH3)2 with the phosphonium salts [CH3PPh3]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C5Me5)2Th[CHPPh3]X, rare terminal phosphorano‐stabilized carbenes with thorium. These complexes feature the shortest thorium–carbon bonds (≈2.30 Å) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C5Me5)2Th[κ2‐(C,C′)‐(CH2)(CH2)PPh2]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH3PPh3]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene.  相似文献   

9.
The reaction of (C5Me5)2Th(CH3)2 with the phosphonium salts [CH3PPh3]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C5Me5)2Th[CHPPh3]X, rare terminal phosphorano‐stabilized carbenes with thorium. These complexes feature the shortest thorium–carbon bonds (≈2.30 Å) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C5Me5)2Th[κ2‐(C,C′)‐(CH2)(CH2)PPh2]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH3PPh3]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene.  相似文献   

10.
The acid–base reaction between Y(CH2SiMe3)3(thf)2 and the pyridyl‐functionalized cyclopentadienyl (Cp) ligand C5Me4H? C5H4N (1 equiv) at 0 °C afforded a mixture of two products: (η5:κ‐C5Me4? C5H4N)Y(CH2SiMe3)2(thf) ( 1 a ) and (η5:κ‐C5Me4? C5H4N)2YCH2SiMe3 ( 1 b ), in a 5:2 ratio. Addition of the same ligand (2 equiv) to Y(CH2SiMe3)3(thf)2, however, generated 1 b together with the novel complex 1 c , the first well defined yttrium mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)[C5HMe33‐CH2)‐C5H4N‐κ]Y(CH2SiMe3) containing a rare κ/η3‐allylic coordination mode in which the C? H bond activation occurs unexpectedly with the allylic methyl group rather than conventionally on Cp ring. If the central metal was changed to lutetium, the equimolar reaction between Lu(CH2SiMe3)3(thf)2 and C5Me4H? C5H4N exclusively afforded the bis(alkyl) product (η5:κ‐C5Me4? C5H4N)Lu(CH2SiMe3)2(thf) ( 2 a ). Similarly, the reaction between the ligand (2 equiv) and Lu(CH2SiMe3)3(thf)2 gave the mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)2LuCH2SiMe3 ( 2 b ), in which no ligand redistribution was observed. Strikingly, treatment of Sc(CH2SiMe3)3(thf)2 with C5Me4H? C5H4N in either 1:1 or 1:2 ratio at 0 °C generated the first cyclopentadienide‐based scandium zwitterionic “tuck‐over” complex 3 , (η5:κ‐C5Me4? C5H4N)Sc(thf)[μ‐η51:κ‐C5Me3(CH2)‐C5H4N]Sc(CH2SiMe3)3. In the zwitterion, the dianionic ligand [C5Me3(CH2)‐C5H4N]2? binds both to Sc13+ and to Sc23+, in η5 and η1/κ modes. In addition, the reaction chemistry, the molecular structures, and the mechanism are also discussed in detail.  相似文献   

11.
Photolysis of a solution of Cp*RuCp (1) in CF3CO2H generates salt [CpRu(C5Me4CH2)]-(O2CCF3)(2 • O2CCF3). The reaction of compound 1 with oleum at 20 °C through the intermediate dication [η5-(CH2C5Me4)Ru(μ:η55-C5H4C5H5)Ru(C5Me4CH2)-η6]2+ leads to the triply charged cation η7CH2)2C5Me3Ru(μη55-C5H4C5H4)Ru(C5Me4CH2)-η6]3+. Synthesis of pentamethylmetallocene derivatives CpMC5Me4X (M = Ru, Fe; X = CHO, CH2OH, CH2An) has been accomplished. The reactions of 1-hydroxymethyl-2,3,4,5-tetramethylruthenocene with acids CF3CO2H, HBF4, CF3CO2H/NaB[C6H3(CF3)2]4, and picric acid C6H2(NO2)3OH afforded salts 2•X (X = CF3CO2, BF4, B[C6H3(CF3)2]4), and (2,3,4,5-tetram ethylruthenocenyl)methyl picrate [CpRu(C5Me4CH2)-η6][(C6H2(NO2)3O] (2•C6H2(NO2)3O). Structure of the latter was characterized by single crystal X-ray diffraction.  相似文献   

12.
Reactions of the flexible α,ω-bis(pyrazol-1-yl) compounds 1,2-bis(pyrazol-1-yl)ethane (L1), 1,8-bis(pyrazol-1-yl)-n-octane (L2), bis[2-(pyrazol-1-yl)ethyl]ether (L3) and bis[2-(pyrazol-1-yl)ethyl]thioether (L4) with precursor organometallic platinum complexes ([(PtBr2Me2)n], [(PtIMe3)4] and [(PtMe2(cod)]/I2) are described herein. The spectroscopic characterization of the platinum(IV) products of these reactions [PtBr2Me2{pz(CH2)mpz}], m = 2 (1) or 8 (2), [PtI2Me2{pz(CH2)2pz}] (3), [PtMe3(pzCH2CH2OCH2CH2pz)][BF4] (4) and [PtMe3(pzCH2CH2SCH2CH2pz)][CF3SO3] (5), where ‘pz’ is pyrazol-1-yl, is discussed. Furthermore, solid state structures of 1, a complex with a seven-membered chelate ring, and 4, a complex bearing the neutral κ2N,N′,κO ligand bis[2-(pyrazol-1-yl)ethyl]ether (L3) are reported.  相似文献   

13.
The cyclopentadienylcobalt(I) compounds C5H5Co(PMe3)P(OR)3 (R = Me, Et, Pri) and C5H5Co(C2H4)L (L = PMe3, P(OMe)3, CO) are prepared by ligand substitution starting from C5H5Co(PMe3)2 and C5H5Co(C2H4)2. Whereas the reaction of C5H5Co(PMe3)P(OMe)3 with CH2Br2 mainly gives [C5H5CoBr(PMe3)P(OMe)3]Br, the dihalogenocobalt(III) complexes C5H5CoX2(PMe3) (X = Br, I) are obtained from C5H5Co(CO)PMe3 and CH2X2. Treatment of C5H5Co(CO)PMe3 or C5H5Co(C2H4)PMe3 with CH2ClI at low temperatures produces a mixture of C5H5CoCH2Cl(PMe3)I and C5H5CoCl(PMe3)I, which can be separated due to their different solubilities. The same reaction in the presence of ligand L gives the carbenoidcobalt(III) compounds [C5H5CoCH2Cl(PMe3)L]PF6 in nearly quantitative yields. If NEt3 is used as the Lewis base, the ylide complexes [C5H5Co(CH2PMe3)(PMe3)X]PF6 (X = Br, I) are obtained. The PF6 salts of the dications [C5H5Co(CH2PMe3)(PMe3)L]2+ (L = PMe3, P(OMe)3, CNMe) and [C5H5Co(CH2PMe3)(P(OMe)3)2]2+ are prepared either from [C5H5Co(CH2PMe3)(PMe3)X]+ and L, or more directly from C5H5Co(CO)PMe3, CH2X2 and PMe3 or P(OMe)3, respectively. The synthesis of C5H5CoCH2OMe(PMe3)I is also described.  相似文献   

14.
Four different dimethyltin(IV) complexes of Schiff bases derived from 2-amino-3-hydroxypyridine and different substituted salicylaldehydes have been synthesized. The compounds, with the general formula [Me2Sn(2-OArCHNC5H3NO)], where Ar = –C6H3(5-CH3) [Me2SnL1], –C6H3(5-NO2) [Me2SnL2], –C6H2(3,5-Cl2) [Me2SnL3], and –C6H2(3,5-I2) [Me2SnL4], were characterized by IR, NMR (1H and 13C), mass spectroscopy and elemental analysis. Me2SnL3 was also characterized by X-ray diffraction analysis and shows a fivefold C2NO2 coordination with distorted square pyramidal geometry. H3C–Sn–CH3 angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn–13C) and 2J(117/119Sn–1H) values (from the 1H-NMR and 13C-NMR spectra). The in vitro antibacterial and antifungal activities of dimethyltin(IV) complexes were also investigated.  相似文献   

15.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

16.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

17.
The preparation of the η4-4-2,3,5,6-tetramethyl-1,4-benzoquinonecomplex [CO(C5Me5)(C10H12O2)] (I) is reported. Complex I undergoesreversible protonation to yield the 2-6-η-4-hydroxy-1-oxo-2,3,5,6-tetramethylcyclohexadienyl complex [Co(C5Me5)(C10H13O2)BF4 (II) and diprotonation to yield the η6-6-1,4-dihydroxy-2,3,5,6-tetramethylbenzene complex [Co(C5Me5)(C10H14O2)] (BF4)2 (III). Methylation of complex I with MeI/AgPF6 gives the 2---6-η-4-methoxy-1-oxo-2,3,5,6-tetramethylcyclohexadienyl complex [Co(C5Me5)(C11H15O2])PF6 (IV). In trifluoroacetic acid solution complex IV is protonated to form the η6-1-hydroxy-4-methoxy-2,3,5,6-tetramethylbenzene cation [Co(C5Me5)-(C11H16O2)]2+  相似文献   

18.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

19.
The synthesis of a series of ansa‐titanocene dichlorides [Cp′2TiCl2] (Cp′=bridged η5‐tetramethylcyclopentadienyl) and the corresponding titanocene bis(trimethylsilyl)acetylene complexes [Cp′2Ti(η2‐Me3SiC2SiMe3)] is described. The ethanediyl‐bridged complexes [C2H4(C5Me4)2TiCl2] ( 2 ‐Cl2) and [C2H4(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 2‐ btmsa; btmsa=η2‐Me3SiC2SiMe3) can be obtained from the hitherto unknown calcocenophane complex [C2H4(C5Me4)2Ca(THF)2] ( 1 ). Furthermore, a heterodiatomic bridging unit containing both, a dimethylsilyl and a methylene group was introduced to yield the ansa‐titanocene dichloride [Me2SiCH2(C5Me4)2TiCl2] ( 3 ‐Cl2) and the bis(trimethylsilyl)acetylene complex [Me2SiCH2(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 3 ‐btmsa). Besides, tetramethyldisilyl‐ and dimethylsilyl‐bridged metallocene complexes (structural motif 4 and 5 , respectively) were prepared. All ansa‐titanocene alkyne complexes were reacted with stoichiometric amounts of water; the hydrolysis products were isolated as model complexes for the investigation of the elemental steps of overall water splitting. Compounds 1 , 2 ‐btmsa, 2 ‐(OH)2, 3 ‐Cl2, 3 ‐btmsa, 4 ‐(OH)2, 3 ‐alkenyl and 5 ‐alkenyl were characterised by X‐ray diffraction analysis.  相似文献   

20.
The ability of [PtX2(Me2phen)] (Me2phen = 2,9-dimethyl-1,10-phenanthroline, X = Cl, Br, I) to act as olefin scavengers, easily giving stable trigonal bipyramidal five-coordinated platinum species [PtX2(Me2phen)(η2-olefin)], has been checked toward [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)], a cyclopentadienyl complex containing an olefinic function introduced by ring methyl activation in the pentamethylcyclopentadienyl iridium(III) complex [(C5Me5)Ir(Me)(CO)(Ph)]. The reaction of [PtI2(Me2phen)] with [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)] results in the formation of the heterometallic binuclear complex [PtI2(Me2phen){(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)}] which is stable and has been completely characterized by elemental analysis, 1H, 13C, and 195Pt NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号