首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrational predissociation spectra are reported for two isomeric forms of the gas-phase ions, CO(3)(-) and NO(3)(-). The peroxy forms, (OOCO(-) and OONO(-)) were isolated using an Ar-mediated synthetic scheme involving exchange of CO and NO for the more weakly bound Ar ligands in O(2)(-)Ar(m) clusters, while the forms based on a central heteroatom (CO(3)(-) and NO(3)(-)) were generated by electron impact on CO(2) and HNO(3) vapor. The simple two-band spectrum of OOCO(-) indicates that it is best described as the O(2)(-) x CO ion-molecule complex, whereas the covalently bound CO(3)(-) form yields a much more complicated vibrational spectrum with bands extending out to 4000 cm(-1). In contrast, the NO(3)(-) ion yields a simple spectrum with only one transition as expected for the antisymmetric NO stretching fundamental of a species with D(3h) structure. The spectrum of the peroxynitrite isomer, OONO(-), displays intermediate complexity that can be largely understood in the context of fundamentals associated with its cis and trans structures previously characterized in an Ar matrix.  相似文献   

2.
Ultraviolet irradiation of a rigid 7 K argon matrix containing alkali or alkaline earth metal atoms and NO(2) isolated from each other by one or two layers of argon forms N(2)O(2)2-dianions insulated from two M(+) cations by argon atoms, and visible photolysis reverses this electron-transfer process likely involving the N(2)O(2)(-) anion intermediate. The isolated N(2)O(2)2- dianion is identified from isotopic substitution and isotopic mixtures, which show that the new 1028.5 cm(-1) metal independent absorption involves two equivalent NO subunits. DFT calculations predict a strong 1078.1 cm(-1) fundamental for the Li(NO)(2)Li molecule and isotopic frequency ratios in excellent agreement with the observed values, which provides a model for the matrix dianion system. The spectrum of solid Na(2)N(2)O(2) exhibits a 1030 cm(-1) infrared band, which strongly supports the present N(2)O(2)2- dianion assignment. The electrostatic stabilization of N(2)O(2)2-, which is probably unstable in the gas phase, is made possible by metal cations separated by one or two insulating layers of argon in the rigid 7 K matrix.  相似文献   

3.
Laser evaporation of carbon rich uranium/carbon alloy targets into condensing argon or neon matrix samples gives weak infrared absorptions that increase on annealing, which can be assigned to new uranium carbon bearing species. New bands at 827.6 cm(-1) in solid argon or 871.7 cm(-1) in neon become doublets with mixed carbon 12 and 13 isotopes and exhibit the 1.0381 carbon isotopic frequency ratio for the UC diatomic molecule. Another new band at 891.4 cm(-1) in argon gives a three-band mixed isotopic spectrum with the 1.0366 carbon isotopic frequency ratio, which is characteristic of the anti-symmetric stretching vibration of a linear CUC molecule. No evidence was found for the lower energy cyclic U(CC) isomer. Other bands at 798.6 and 544.0 cm(-1) are identified as UCH, which has a uranium-carbon triple bond similar to that in UC. Evidence is found for bicyclic U(CC)(2) and tricyclic U(CC)(3). This work shows that U and C atoms react spontaneously to form the uranium carbide U≡C and C≡U≡C molecules with uranium-carbon triple bonds.  相似文献   

4.
The oxy-cobolglobin models of the general formula (NH(3))Co(Por)(O(2)) (Por = meso-tetra-phenyl and meso-tetra-p-tolylporphyrinato dianions) were constructed by sequential low temperature interaction of NH(3) and dioxygen with microporous layers of Co-porphyrins. At cryogenic temperatures small increments of NO were introduced into the cryostat and the following reactions were monitored by the FTIR and UV-visible spectroscopy during slow warming. Upon warming the layers from 80 to 120 K a set of new IR bands grows with correlating intensities along with the consumption of the ν(O(2)) band. Isotope labeling experiments with (18)O(2), (15)NO and N(18)O along with DFT calculations provides a basis for assigning them to the six-coordinate peroxynitrite complexes (NH(3))Co(Por)(OONO). Over the course of warming the layers from 140 to 170 K these complexes decompose and there are spectral features suggesting the formation of nitrogen dioxide NO(2). Upon keeping the layers at 180-210 K the bands of NO(2) gradually decrease in intensity and the set of new bands grows in the range of 1480, 1270, and 980 cm(-1). These bands have their isotopic counterparts when (15)NO, (18)O(2) and N(18)O are used in the experiments and certainly belong to the 6-coordinate nitrato complexes (NH(3))Co(Por)(η(1)-ONO(2)) demonstrating the ability of oxy coboglobin models to promote the nitric oxide dioxygenation (NOD) reaction similar to oxy-hemes. As in the case of Hb, Mb and model iron-porphyrins, the six-coordinate nitrato complexes are not stable at room temperature and dissociate to give nitrate anion and oxidized cationic complex Co(III)(Por)(NH(3))(1,2).  相似文献   

5.
The linear MgC(3)(-) anion has been identified in the products from the dual Nd:YAG laser ablation of carbon and magnesium rods trapped in solid Ar at ~12 K. Measurements of (13)C isotopic shifts confirm the identification of the ν(1)(σ) vibrational fundamental at 1797.5 cm(-1). A second fundamental ν(2)(σ) has been tentatively identified at 1190.1 cm(-1). The results are in good agreement with the predictions of density functional theory calculations using the B3LYP functional with the 6-311+G(d) basis set. This is the first optical detection of the linear isomer of MgC(3)(-).  相似文献   

6.
A high yield of carbon chains has been produced by the laser ablation of carbon rods having (13)C enrichment. FTIR spectroscopy of these molecules trapped in solid Ar has resulted in the identification of two new combination bands for linear C(5) and C(9). The (ν(1) + ν(4)) combination band of linear C(5) has been observed at 3388.8 cm(-1), and comparison of (13)C isotopic shift measurements with the predictions of density functional theory calculations (DFT) at the B3LYP/cc-pVDZ level makes possible the assignment of the ν(1)(σ(g)(+)) stretching fundamental at 1946 cm(-1). Similarly, the observation of the (ν(2) + ν(7)) combination band of linear C(9) at 3471.8 cm(-1) enables the assignment of the ν(2)(σ(g)(+)) stretching fundamental at 1871 cm(-1). The third and weakest of the infrared stretching fundamentals of linear C(7), the ν(6)(σ(u)(+)) fundamental at 1100.1 cm(-1), has also been assigned.  相似文献   

7.
2,2'-Bipyrazine (2,2'-bpz) reacts with cis-(NH(3))(2)Pt(II) in water to give a variety of products, several of which were isolated and characterized by X-ray analysis: cis-[Pt(NH(3))(2)(2,2'-bpz-N4)(2)](NO(3))(2)·3H(2)O (1), [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(3)]-(PF(6))(5)NO(3)·7H(2)O (2a), [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(3)](BF(4))(2)-(SiF(6))(2)·15H(2)O (2b), and [{cis-Pt(NH(3))(2)(2,2'-bpz-N4,N4')}(4)]-(SO(4))(4)·22H(2)O (3). In 1, 2b, and 3 the 2,2'-bpz ligands adopt approximately C(2h) symmetries, hence the two pyrazine halves are in trans orientation, whereas in 2a all three 2,2'-bpz bridges are approximately C(2v) symmetric, with the pyrazine halves cis to each other. The topologies of the two triangular complexes 2a and 2b are consequently distinctly different, but nevertheless both cations act as hosts for anions. In 2a a PF(6)(-) and a NO(3)(-) anion are associated simultaneously with the +6 cation, whereas in 2b it is a BF(4)(-) anion and a water molecule, which are trapped in its cavity. There is no anion inclusion in case of the metallasquare 3. In principle, 3 can exist in a large number of stereoisomers, depending on the rotational states of the bridging 2,2'-bpz ligands. Isolation of a single rotamer form of 3 with C(2h) symmetric 2,2'-bpz ligands and an overall meso form is proposed to be a consequence of a highly efficient self-assembly process that starts from the precursor 1 and reaction with two cis-(NH(3))(2)Pt(II) units. This process leads to the isolated rotamer of 3 regardless of whether two cations 1 in head-head form react with two cis-(NH(3))(2)Pt(II), or whether the Δ enantiomer of the chiral head-tail form of 1 combines with its Λ enantiomer through two cis-(NH(3))(2)Pt(II) entities.  相似文献   

8.
As a first generation model for the reactive reduced active-site form of bacterial nitric oxide reductase, a heme/non-heme diiron(II) complex [(6L)Fe(II)...Fe(II)-(Cl)]+ (2) {where 6L = partially fluorinated tetraphenylporphyrin with a tethered tetradentate TMPA chelate; TMPA = tris(2-pyridyl)amine} was generated by reduction of the corresponding mu-oxo diferric compound [(6L)Fe(III)-O-Fe(III)-Cl]+ (1). Coordination chemistry models for reactions of reduced NOR with O2, CO, and NO were also developed. With O2 and CO, adducts are formed, [(6L)Fe(III)(O2-))(thf)...Fe(II)-Cl]B(C6F5)4 (2a x O2) {lambda(max) 418 (Soret), 536 nm; nu(O-O) = 1176 cm(-1), nu(Fe-O) = 574 cm(-1) and [(6L)Fe(II)(CO)(thf)Fe(II)-Cl]B(C6F5)4 (2a x CO) {nu(CO) 1969 cm(-1)}, respectively. Reaction of purified nitric oxide with 2 leads to the dinitrosyl complex [(6L)Fe(NO)Fe(NO)-Cl]B(C6F5)4 (2a x (NO)2) with nu(NO) absorptions at 1798 cm(-1) (non-heme Fe-NO) and 1689 cm(-1) (heme-NO).  相似文献   

9.
The pulse radiolysis of aqueous NO has been reinvestigated, the variances with the prior studies are discussed, and a mechanistic revision is suggested. Both the hydrated electron and the hydrogen atom reduce NO to yield the ground-state triplet (3)NO(-) and singlet (1)HNO, respectively, which further react with NO to produce the N(2)O(2)(-) radical, albeit with the very different specific rates, k((3)NO(-) + NO) = (3.0 +/- 0.8) x 10(9) and k((1)HNO + NO) = (5.8 +/- 0.2) x 10(6) M(-)(1) s(-)(1). These reactions occur much more rapidly than the spin-forbidden acid-base equilibration of (3)NO(-) and (1)HNO under all experimentally accessible conditions. As a result, (3)NO(-) and (1)HNO give rise to two reaction pathways that are well separated in time but lead to the same intermediates and products. The N(2)O(2)(-) radical extremely rapidly acquires another NO, k(N(2)O(2)(-) + NO) = (5.4 +/- 1.4) x 10(9) M(-)(1) s(-)(1), producing the closed-shell N(3)O(3)(-) anion, which unimolecularly decays to the final N(2)O + NO(2)(-) products with a rate constant of approximately 300 s(-)(1). Contrary to the previous belief, N(2)O(2)(-) is stable with respect to NO elimination, and so is N(3)O(3)(-). The optical spectra of all intermediates have also been reevaluated. The only intermediate whose spectrum can be cleanly observed in the pulse radiolysis experiments is the N(3)O(3)(-) anion (lambda(max) = 380 nm, epsilon(max) = 3.76 x 10(3) M(-)(1) cm(-)(1)). The spectra previously assigned to the NO(-) anion and to the N(2)O(2)(-) radical are due, in fact, to a mixture of species (mainly N(2)O(2)(-) and N(3)O(3)(-)) and to the N(3)O(3)(-) anion, respectively. Spectral and kinetic evidence suggests that the same reactions occur when (3)NO(-) and (1)HNO are generated by photolysis of the monoprotonated anion of Angeli's salt, HN(2)O(3)(-), in NO-containing solutions.  相似文献   

10.
Infrared spectra of various OH+ and H2O+ isotopomers solvated in solid argon are presented. The OH+ and H2O+ cations were produced by co-deposition of H2O/Ar mixture with high-frequency discharged Ar at 4 K. Detailed isotopic substitution studies confirm the assignments of absorptions at 3054.9 and 3040.0 cm(-1) to the antisymmetric and symmetric H-O-H stretching vibrations of H2O+ and 2979.6 cm(-1) to the O-H stretching vibration of OH+. The frequencies of H2O+ solvated in solid argon are red-shifted, whereas the frequency of OH+ is blue-shifted with respect to the gas-phase fundamentals. On the basis of previous gas-phase studies and quantum chemical calculations, the OH+ and H2O+ cations solvated in solid argon may be regarded as the OH+-Ar5 and H2O+-Ar4 complexes isolated in the argon matrix.  相似文献   

11.
Xu Q  Jiang L 《Inorganic chemistry》2006,45(21):8648-8654
Reactions of laser-ablated tin and lead atoms with nitric oxide molecules in solid argon and neon have been investigated using matrix-isolation infrared spectroscopy. In the argon experiments, absorptions at 1560.1, 1625.8, and 1486.7 cm(-1) are assigned to the N-O stretching vibrations of the SnNO and Sn(NO)2 molecules, and absorptions at 1541.9, 1630.0, 1481.8, and 1457.5 cm(-1) are assigned to the N-O stretching vibrations of the PbNO, Pb(NO)2, and PbNO- molecules on the basis of isotopic shifts and splitting patterns. The present neon experiments only produce neutral tin and lead mononitrosyls. Density functional theory calculations have been performed on these tin and lead nitrosyls. The good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts substantiates the identification of these nitrosyls from the matrix infrared spectra.  相似文献   

12.
Wavelength-selective infrared multiple photon photo-dissociation (IRMPD) was used to generate spectra of anionic nitrate complexes of UO(2)(2+) and Eu(3+) in the mid-infrared region. Similar spectral patterns were observed for both species, including splitting of the antisymmetric O-N-O stretch into high and low frequency components with the magnitude of the splitting consistent with attachment of nitrate to a strong Lewis acid center. The frequencies measured for [UO(2)(NO(3))(3)](-) were within a few cm(-1) of those measured in the condensed phase, the best agreement yet achieved for a comparison of IRMPD with condensed phase absorption spectra. In addition, experimentally-determined values were in good general agreement with those predicted by DFT calculations, especially for the antisymmetric UO(2) stretch. The spectrum from the [UO(2)(NO(3))(3)](-) was compared with that of [Eu(NO(3))(4)](-), which showed that nitrate was bound more strongly to the Eu(3+) metal center, consistent with its higher charge. The spectrum of a unique uranyl-oxo species having an elemental composition [UO(9)N(2)](-) was also acquired, that contained nitrate absorptions suggestive of a [UO(2)(NO(3))(2)(O)](-) structure; the spectrum lacked bands indicative of nitrite and superoxide that would be indicative of an alternative [UO(2)(NO(3))(NO(2))(O(2))](-) structure.  相似文献   

13.
The structure and thermodynamics of the hydrated electron are probed with resonance Raman spectroscopy of isotopic mixtures of H(2)O and D(2)O. The strongly enhanced intramolecular bends of e(-)(H(2)O) and e(-)(D(2)O) produce single downshifted bands, whereas the e(-)(HOD) bend consists of two components: one slightly upshifted from the 1,446 cm(-1) bulk frequency to 1,457 cm(-1) and the other strongly downshifted to approximately 1,396 cm(-1). This 60 cm(-1) split and the 200 (120) cm(-1) downshifts of the OH (OD) stretch frequencies relative to bulk water reveal that the water molecules that are Franck-Condon coupled to the electron are in an asymmetric environment, with one proton forming a strong hydrogen bond to the electron. The downshifted bend and librational frequencies also indicate significantly weakened torsional restoring forces on the water molecules of e(-)(aq), which suggests that the outlying proton is a poor hydrogen bond donor to the surrounding solvent. A 1.6-fold thermodynamic preference of the electron for H(2)O is observed based on the relative intensities of the e(-)(H(2)O) and e(-)(D(2)O) bands in a 50:50 isotopic mixture. This equilibrium isotope effect is consistent with the downshifted vibrational frequencies and a relative reduction of the zero-point energy of H(2)O bound to the electron. Our results enhance the cavity model of the solvated electron and support only those models that contain water monomers as opposed to other molecular species.  相似文献   

14.
Laser-ablated Rh atoms react with C(2)H(2) upon co-condensation in excess argon and neon to form the insertion product HRhCCH, the alkyne RhCCH, the vinylidene RhCCH(2), and the metallacycle complex Rh-η(2)-(C(2)H(2)). These species are identified through (13)C(2)H(2), C(2)D(2), and mixed C(2)HD isotopic substitutions and density functional theory isotopic frequency calculations. The HRhCCH molecule is characterized by the CH stretching mode at 3306.2 cm(-1) (Ar) and 3310.9 cm(-1) (Ne), the Rh-H stretching mode at 2090.8 cm(-1) (Ar) and 2111.0 cm(-1) (Ne), and two CCH deformation modes at 584.3 and 573.3 cm(-1) (Ar) and 587.1 and 580.3 cm(-1) (Ne). The absorptions for the vinylidene RhCCH(2) complex are observed at 3150.9 (Ar), 3147.2 (Ne) (CH stretching), 1690.1 (Ar), 1694.3 (Ne) (CC stretching), and 804.9 (Ar), 810.5 cm(-1) (Ne) (CCH deformation). The metallacycle Rh-η(2)-(C(2)H(2)) complex is also identified through CC stretching and CCH deformation modes. The insertion reaction of ground Rh atom to the C-H bond is spontaneous on the basis of the growth of HRhCCH absorptions upon annealing in both solid neon and argon. Here, we show that atomic Rh can convert acetylene to the simple Rh vinylidene complex, analogous to that found for ligand-supported Rh complexes.  相似文献   

15.
Addition of 2 equiv of Ce(4+) to the dimeric ruthenium mu-oxo ion cis,cis-[(bpy)(2)Ru(OH(2))](2)O(4+) (formal oxidation state III-III, subsequently denoted [3,3]) or addition of 1 equiv of Ce(4+) to the corresponding [3,4] ion gave near-quantitative conversion to the [4,4] ion, confirming our recent assignment of this oxidation state as an accumulating intermediate during water oxidation by the cis,cis-[(bpy)(2)Ru(O)](2)O(4+) ([5,5]) ion. The rates of water exchange at the cis-aqua positions in the [3,3] and [3,4] ions were investigated by incubating H(2)(18)O-enriched samples in normal water for predetermined times, then oxidizing them to the [5,5] state and measuring by resonance Raman (RR) spectroscopy changes in the magnitudes of the O-isotope sensitive bands at 780 and 818 cm(-1). These bands have been assigned to Ru=(18)O and Ru=(16)O stretching modes, respectively, for ruthenyl bonds formed by deprotonation of the aqua ligands upon oxidation to the [5,5] state. An intermediate accumulated during the course of the isotope exchange reaction that gave a [5,5] ion possessing both approximately 782 and approximately 812 cm(-1) bands; this spectrum was assigned to the mixed-isotope species, (bpy)(2)Ru((16)O)(16)ORu((18)O)(bpy)(2)(4+). Kinetic analysis of solutions at various levels of oxidation indicated that only the [3,3] ion underwent substitution; the exchange rate constant obtained in 0.5 M trifluoromethanesulfonic acid, 23 degrees C, was 7 x 10(-3) s(-1), which is (10(3)-10(5))-fold larger than rate constants measured for anation of monomeric (bpy)(2)Ru(III)X(H(2)O)(3+) ions bearing simple sigma-donor ligands (X).  相似文献   

16.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

17.
Infrared multiple photon dissociation spectra for the chloride ion solvated by either water, methanol or ethanol have been recorded using an FTICR spectrometer coupled to a free-electron laser, and are presented here along with assignments to the observed bands. The assignments made to the Cl(-)/H(2)O, Cl(-)(CH(3)OH), and Cl(-)(CH(3)CH(2)OH) spectra are based on comparison with the neutral H(2)O, CH(3)OH, and CH(3)CH(2)OH spectra, respectively. This work confirms that a band observed around 1400 cm(-1) in the Cl(-)(H(2)O) spectrum is not due to the Ar tag in Ar predissociation spectra. The carrier of this band is, most likely, the first overtone of the OHCl bend. Based on the position of the overtone in the IRMPD spectrum, 1375 cm(-1), the fundamental must occur very close to 700 cm(-1) and observation of this band should aid theoretical treatments of the spectrum of this complex. B3LYP/6-311++G(2df,2pd) calculations are shown to reproduce the IRMPD spectra of all three solvated chloride species. They also predict that attaching one or two Ar atoms to the Cl(-)(H(2)O) complex results in a shift of no more than a few wavenumbers in the fundamental bands for the bare complex, in agreement with previous experiment. For both alcohol-Cl(-) complexes, the S(N)2 "backside attack" isomers are not observed and Cl(-) is predicted theoretically, and confirmed experimentally, to be bound to the hydroxyl hydrogen. For Cl(-)(CH(3)CH(2)OH), the trans and gauche conformers are similar in energy, with the gauche conformer predicted to be thermodynamically favoured. The experimental infrared spectrum agrees well with that predicted for the gauche conformer but a mixture of gauche and anti conformers cannot be ruled out based on the experimental spectra nor on the computed thermochemistry.  相似文献   

18.
Four new metal-organic polymeric complexes, {[Cu(mu-OH)(mu-ClPhtrz)][(H 2O)(BF 4)]} n ( 1), {[Cu(mu-OH)(mu-BrPhtrz)][(H 2O)(BF 4)]} n ( 2), {[Cu(mu-OH)(mu-ClPhtrz)(H 2O)](NO 3)} n ( 3), and {[Cu(mu-OH)(mu-BrPhtrz)(H 2O)](NO 3)} n ( 4) (ClPhtrz = N-[( E)-(4-chlorophenyl)methylidene]-4 H-1,2,4-triazol-4-amine; BrPhtrz = N-[( E)-(4-bromophenyl)methylidene]-4 H-1,2,4-triazol-4-amine), were synthesized in a reaction of substituted 1,2,4-triazole and various copper(II) salts in water/acetonitrile solutions. The structures of 1- 4 were characterized by single-crystal X-ray diffraction analysis. The Cu(II) ions are linked both by single N (1), N (2)-1,2,4-triazole and hydroxide bridges yielding one dimensional (1D) linear chain polymers. The tetragonally distorted octahedral geometry of copper atoms is completed alternately by two water and two BF 4 (-) anion molecules in 1 and 2 but solely by two water molecules in 3 and 4. Magnetic properties of all complexes were studied by variable temperature magnetic susceptibility measurements. The Cu(II) ions are strongly antiferromagnetically coupled with J = -419(1) cm (-1) ( 1), -412(2) cm (-1) ( 2), -391(3) cm (-1) ( 3), and -608(2) cm (-1) ( 4) (based on the Hamiltonian H = - J[ summation operator S i . S i+ 1]). The nature and the magnitude of the antiferromagnetic exchange were discussed on the basis of complementarity/countercomplementarity of the two competing bridges.  相似文献   

19.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

20.
The new complex trans-[NCRu(py)(4)(CN)Ru(py)(4)NO](PF(6))(3) (I) was synthesized. In acetonitrile solution, I shows an intense visible band (555 nm, epsilon = 5800 M(-1) cm(-1)) and other absorptions below 350 nm, associated with d(pi) --> pi(py) and pi(py) --> pi(py) transitions. The visible band is presently assigned as a donor-acceptor charge transfer (DACT) transition from the remote Ru(II) to the delocalized [Ru(II)-NO(+)] moiety. Photoinduced release of NO is observed upon irradiation at the DACT band. Application of the Hush model reveals strong electronic coupling, with H(DA) = approximately 2000 cm(-1). The difference between the optical absorption energy and redox potentials for the donor and acceptor sites (Ru(III,II), 1.40 V, and NO(+)/NO, 0.50 V, vs Ag/AgCl, 3 M KCl, respectively) (hnu - DeltaE(red)) is 1.33 eV, a large value which probably relates to the significant changes in distances and angles for the Ru-N-O moiety upon reduction. UV-vis absorptions, IR frequencies, and redox potentials are solvent-dependent. Controlled potential reduction (of NO(+)) and oxidation (of Ru(II) associated with the dicyano-chromophore) of I afford stable species, [NCRu(II)(py)(4)(CN)Ru(py)(4)NO](2+) (I(red)) and [NCRu(III)(py)(4)(CN)Ru(py)(4)NO](4+) (I(ox)), respectively, which are characterized by UV-vis and IR spectroscopies. I(red) shows an EPR spectrum characteristic of [Ru(II)-NO(*)] complexes. Compound I is electrophilically reactive in aqueous solution above pH 5: values of the equilibrium constant for the reaction [NCRu(py)(4)(CN)Ru(py)(4)NO](3+)+ 2 OH(-) <--> [NCRu(py)(4)(CN)Ru(py)(4)NO(2)](+) + H(2)O, K = 3.2 +/- 1.4 x 10(15) M(-2), and of the rate constant for the nucleophilic addition of OH(-), k = 9.2 +/- 0.2 x 10(3) M(-1) s(-1)(25 degrees C, I = 1 M), are obtained, with DeltaH = 90.7 +/- 3.8 kJ mol(-1) and DeltaS = 135 +/- 13 J K(-1) mol(-1). The oxidized complex, I(ox), shows an enhanced electrophilic reactivity toward OH(-). This addition reaction is followed by irreversible processes, which most probably lead to disproportionation of bound nitrite and other products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号