首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular geometry and vibrational frequencies of N-mesylhydroxylamin (N-MHN) and N-mesyl-O-methylhydroxylamin (N-MMHN) in the ground state have been calculated using the Hartree–Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric band lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of N-MHN and N-MMHN and calculated results by density functional B3LYP and Hartree–Fock methods indicate that B3LYP is superior to the scaled Hartree–Fock approach for molecular vibrational problems.  相似文献   

2.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra at RHF/6-31++G** and B3LYP/6-31++G** levels for phenobarbitone (C12H12N2O3) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using MOLVIB program. A detailed interpretation of the infrared spectra of the title compound is reported. On the basis of the agreement between the calculated and observed results, the assignments of fundamental vibrational modes of phenobarbitone were examined and some assignments were proposed. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title compound have been constructed.  相似文献   

3.
Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree–Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented.  相似文献   

4.
In this work, the Fourier transform Raman and Fourier transform infrared spectra of 2-chloronicotinic acid (2-CNA) are recorded in the solid phase. The molecular geometry, vibrational frequencies, infrared intensities and Raman scattering activities of 2-CNA in ground state have been calculated by using ab initio Hartree–Fock (HF) and density functional (B3LYP and B3PW91) methods with 6-31G(d) and 6-311G(d) basis sets level. On the basis of the comparison between calculated and experimental results and the comparison with related molecule, assignments of fundamental vibrational modes are examined. The optimized geometric parameters (bond lengths and bond angles) obtained by using HF show the best agreement with the experimental values of 2-CNA. Comparison of the observed fundamental vibrational frequencies of 2-CNA and calculated results by density functional (B3LYP and B3PW91) and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock and B3PW91 approach for molecular vibrational problems.  相似文献   

5.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra and atomic charges at RHF/6-31+G*, B3LYP/6-31+G* and B3LYP/6-31++G* levels for 2-mercaptobenzothiazole (MBT, C7H5NS2) and 2-mercaptobenzoxazole (MBO, C7H5NOS) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. The results show that the scaled theoretical vibrational frequencies is very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 2-mercaptobenzothiazole and 2-mercaptobenzoxazole was reported. Comparison of calculated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

6.
《Vibrational Spectroscopy》2007,43(2):325-332
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments of 2-,4-,6-methylquinoline (2-,4-,6-mq) in the ground state were performed by HF and DFT/B3LYP levels of theory using the 6-31++G(d,p) basis set. Harmonic and anharmonic vibrational frequencies were calculated. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method by using parallel quantum mechanic solutions program. The general agreements between the observed and calculated frequencies are shown.  相似文献   

7.
The gas phase infrared spectrum of 3-aminoacetophenone (3AAP) was measured in the range 5000-500cm(-1) and with a resolution of 0.5cm(-1). The Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectra of 3AAP were recorded in the solid phase. Geometry optimizations were done without any constraint and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and density functional theory (DFT) levels invoking 6-311G(2df 2p) basis set and the results are compared with the experimental values. Harmonic-vibrational wavenumber was also calculated for the minimum energy conformer at ab initio and DFT levels using 6-31G(d,p) basis set and the results are compared with related molecules. With the help of specific scaling procedures, the observed vibrational wavenumbers in gas phase, FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrogram for the FT-IR spectra of the title molecule is also constructed.  相似文献   

8.
The molecular geometry and vibrational frequencies of lepidine and 2-chlorolepidine in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6-31G (d) as the basis set. The optimized geometric bond lengths obtained by using B3LYP and bond angles obtained by HF that correspond to the experimental values of 2-cl-lepidine molecule were given. Comparison of the observed fundamental vibrational frequencies of lepidine and 2-chlorolepidine, and calculated results by density functional B3LYP and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock approach for molecular vibrational problems.  相似文献   

9.
Quantum chemical calculations of energies, geometrical structural parameters, harmonic and anharmonic frequencies of 2,4-DCP and 4,6-DCP were carried out by HF and density functional theory methods with 6-311++G(d,p) as basis set. The assignment of each normal mode has been made using the observed and calculated frequencies, their IR and Raman intensities. A detailed interpretation of the FT-IR and FT-Raman spectra of 2,4-DCP and 4,6-DCP was reported on the basis of the calculated potential energy distribution (PED). A comparison of theoretically calculated vibrational frequencies at B3LYP/6-311++G(d,p) with FT-IR and FT-Raman experimental data shows good agreement between them. Natural atomic charges of 2,4-DCP and 4,6-DCP were calculated and compared with pyrimidine molecule.  相似文献   

10.
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments, (1)H and (13)C NMR chemical shift values of 8-hydroxy-1-methylquinolinium iodide monohydrate [(C(10)H(10)NO)(+)I(-)H(2)O] in the ground state were performed by HF and B3LYP levels of theory using the LanL2DZ basis set. The optimized bond lengths and bond angles are in good agreement with the X-ray data. The vibrational spectra of the title compound which is calculated by HF and DFT methods, reproduces vibrational wave numbers and intensities with an accuracy which allows reliable vibrational assignments. The title compound [(C(10)H(10)NO)(+)I(-)H(2)O] have been studied theoretically in the 4, 000-200 cm(-1) region and the assignment of all the observed bands were made. The analysis of the infrared spectra indicates that there are some structure-spectra correlations. These methods are proposed as a tool to be applied in the structural characterization of 8-hydroxy-1-methylquinolinium iodide monohydrate [(C(10)H(10)NO)(+)I(-)H(2)O], and thus providing useful support in the interpretation of experimental NMR data.  相似文献   

11.
The molecular geometry and vibrational frequencies of indole and 5-aminoindole in the ground state have been calculated by using the Hartree–Fock and density functional method with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of indole and 5-aminoindole with the calculated results by density functional and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock approach for molecular vibrational problems. The theoretical spectrograms for FT-IR spectrum of 5-aminoindole have been constructed.  相似文献   

12.
《Comptes Rendus Chimie》2015,18(5):516-524
Density functional theory (DFT) is applied to obtain absorption spectra at THz frequencies for molecular clusters of H2O. The vibrational modes of the clusters are calculated. Coupling among molecular vibrational modes explains their spectral features associated with THz excitation. THz excitation is associated with vibrational frequencies which are here calculated within the DFT approximation of electronic states. This is done for both isolated molecules and collections of molecules in a cluster. The principal result of the paper is that a crystal-like cluster of 38 water molecules together with a continuum solvent background is sufficient to replicate well the experimental vibrational frequencies.  相似文献   

13.
The vibrational frequencies of three substituted 4-thioflavones in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G* and 6-31+G** basis sets. The structural analysis shows that there exists H-bonding in the selected compounds and the hydrogen bond lengths increase with the augment of the conjugate parameters of the substituent group on the benzene ring. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The theoretical spectrograms for FT-IR spectra of the title compounds have been constructed. In addition, it is noted that the selected compounds show significant activity against Shigella flexniri. Several electronic properties and thermodynamic parameters were also calculated.  相似文献   

14.
Ab initio calculations using the MP2/cc-pVTZ basis set do an excellent job of predicting the inversion barrier (247 vs. 232 cm−1) and dihedral angle (26°) of cyclopentene. DFT calculations also do an excellent job of predicting the vibrational frequencies of the d0, d1, d4, and d8 isotopomers. They have also allowed the reassignments of several of the vibrational frequencies.  相似文献   

15.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

16.
The molecular structure and vibrational spectra of 3-acetyl-4-[N-(2'-aminopyridinyl)-3-amino]-3-buten-2-one (C(11)H(13)N(3)O(2)) in the ground state have been investigated by Hartree-Fock and density functional method (B3LYP and BLYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that B3LYP is superior to the scaled HF approach for molecular problems.  相似文献   

17.
Comprehensive studies of the molecular structures, vibrational frequencies and infrared intensities of the antiperiplanar (ap) and synclinal (sc) conformers of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) have been performed by the density functional (B3LYP) method using the extended 6-311++G(df,pd) basis set. The detailed natural bond orbital (NBO) analysis has revealed the nature of the hyperconjugative interactions, which stabilize each conformer, in the gas phase. The mid-infrared spectra of HFIP in carbon tetrachloride solution were measured, and the experimental intensities of each conformer were obtained by the curve–resolution procedure. The relative abundance of the two conformers, calculated from the relative intensities, shows nearly equimolar ratio (Nsc/Nap ≈ 1), in this solution. The DFT-predicted frequencies show very good agreement with the experimental data. The clear-cut vibrational assignment for each conformer is reported on the basis of the calculated potential energy distributions. Several controversies in an earlier assignment of HFIP have been elucidated.  相似文献   

18.
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at  25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules.  相似文献   

19.
Vibrational frequencies and gauge including atomic orbital (GIAO) 13C NMR and 1H NMR chemical shift values of 2,6 distyrylpyridine (C21H17N) in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. These methods are proposed as a tool to be applied in the structural characterization of 2,6 distyrylpyridine (C21H17N). The title compound has C2v point group, thus providing useful support in the interpretation of experimental IR data. In addition, obtained results were related to the linear correlation plot of experimental 13C NMR, 1H NMR chemical shifts values and IR data.  相似文献   

20.
The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the C(S) symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号