首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a (classical) local field theory which contains as a special solution the (classical) dual string recently discussed by Goddard, Goldstone, Rebbi and Thorn. The basic field is a gauge field Fμν(x), and the Lagrangian is given by (?12α')√F2. We treat the case of closed strings (corresponding to the Shapiro-Virasoro model) where Fμν can be expressed in terms of potentials Aμ. Quantization of Fμν is briefly discussed, but a more thorough discussion is postponed.  相似文献   

2.
An effective action for QCD at one-loop order, which is real, manifestly Lorentz and gauge invariant and which depends on an infinite family of gauge invariants (tr(F μν F μν), tr(F μν F μν F F ),...), is obtained. Moreover, anAnsatz for a vacuum configuration is made, whose corresponding vacuum energy density is lower than the one for the SavvidyAnsatz. Both the cases of pure QCD and of QCD with massless fermions are considered.  相似文献   

3.
4.
5.
It is argued that since in asymptotically free Yang-Mills theories the quantum ground state is not controlled by perturbation theory, there is no a priori reason to believe that individual orbits corresponding to minima of the classical action dominate the Euclidean functional integral. To examine and classify the vacua of the quantum gauge theory, we propose an effective action in which the gauge field coupling constant g is replaced by the effective coupling g(t), t = ln[Fμνa)2μ4]. The vacua of this model correspond to paramagnetism and perfect paramagnetism, for which the gauge field is Fμνa = 0, and ferromagnetism, for which (Fμνa)2 = λ2, i.e. spontaneous magnetization of the vacuum occurs. We show that there are no instanton solutions to the quantum effective action. The equations for a point classical source of color spin are solved, and we show that the field infrared energy becomes linearly divergent in the limit of spontaneous magnetization. This implies bag formation, and an electric Meissner effect confining the bag contents.  相似文献   

6.
具有广义协变的包含重力场贡献的重力场方程   总被引:1,自引:0,他引:1       下载免费PDF全文
娄太平 《物理学报》2006,55(4):1602-1606
利用半度规λ(α)μ表象的数学工具定义一个对广义坐标具有协变形式的重力场矢势函数ω(α)μ≡-cλ(α)μ,给出一个具有广义协变的包含重力场贡献的重力场方程Rμν-gμνR/2+Λgμν=8πG(T(Ⅰ)μν+T(Ⅱ)μν) 关键词: 重力场方程 协变形式 能量-动量张量 量子化  相似文献   

7.
Antisymmetric tensor fields Bμν subject to the gauge transformation δBμν = ?μξν ? ?νξμ can describe spinless particles. We investigate the properties of field theories with a “non-abelian generalization” of this invariance. One class of such theories is equivalent to non-linear principal chiral σ-models, another to massive Yang-Mills theories. A supersymmetric analogue in 2 + 2 superspace is constructed and leads to the supersymmetric σ-model defined on a general riemannian manifold.  相似文献   

8.
We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σμν. After having obtained the expression of the local spin-dependent phase-space density f(x, p)στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ωμν constructed with the Frenet-Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term −(1/2)Ωμνσμν. We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. tμ = σμνuν ≠ 0, in contrast to the common assumption tμ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.  相似文献   

9.
A formulation of QED using only gauge invariant fields acting on a physical state space is discussed. The fields are the electromagnetic tensor Fμν and a non-local electron field ψf depending on a quadruple {fμ} of auxiliary functions. The f-ambiguity is physically meaningful: the fμ contain information on the asymptotic configuration of the electromagnetic field accompanying charged particles. Equations of motion are introduced and solved perturbatively, in the sense that expressions for the Wightman functions of the theory are derived. No information on the commutation relations between the basic fields is needed.  相似文献   

10.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

11.
12.
The trajectory of a charged test particle under a Lorentz force is obtained as the geodesic of a riemannian four dimensional manifold. Originally, the geodesic equation is nonlinear in some vector field Aμ. The nonlinearity is traded in for the correct characteristic em of the test particle through a gauge condition, imposed upon Aμ, which turns the geodesic into the fully covariant linear and gauge invariant Lorentz equation. Fitting the em ratio inside the gauge leaves Fμν independent of em and allows its identification with the E.-M. tensor Fμν. This four dimensional approach allows the identification of the fifth coordinate used in Kaluza's geometrization |1,2|. The gauge function appears as the sum of Hamilton-Jacobi function plus an additional term, related to the “length” of the trajectory. It is this latter term which guarantees the correct “normalisation” of the em ratio.  相似文献   

13.
Massless particles represented by the fields with mixed spinor indices of SL(2,C) are generally shown to be forbidden in covariant field theory under the assumptions of positivity and covariiance alone. This remains true also in gauge theory (in which a negative metric appears) as far as the particles are gauge invariant. This in particular implies that any dynamical “gauge-type particle” (such as vector Aμ, Rarita-Schwinger ψμ etc.) cannot appear unless the system has a corresponding local invariance from the outset.  相似文献   

14.
A previous study of the energy-momentum tensor in ?4 theory and spontaneously broken non-Abelian gauge field theories is extended here to show finiteness to all orders in perturbation theory. Divergences of Green's functions Γμν(j) (q; p1, …, pj) involving the energy-momentum tensor θμν and j particle fields are removed by counterterms of the ordinary Lagrangian plus a renormalization of the coefficient of the Callan-Coleman-Jackiw improvement term in θμν. Physically the extra renormalization means that the mean square “mass radius” of elementary spin zero particles must be specified from experiment.  相似文献   

15.
Realization of the Poincaré groupP 10 as a subgroup ofGL(5,R) that maps a 4-dimensional affine set into itself has been shown to lead to a direct Yang-Mills gauging process. This paper discusses the differences between direct gauge theory forP 10 and previously published works. These differences are fundamental, both physically and mathematically, and lead to marked departures from previous concepts and interpretations. The translation subgroup is correctly gauged; the metric structure and metric compatibility are derived from the gauging process rather than assumed; spin structures are automatically incorporated in a consistent manner; the local holonomy group is shown to be the component of the Lorentz group connected to the identity; the geometric analog of Yang-Mills minimal coupling precludes dependence of the free gauge field Lagranian on torsion; and the theory reduces exactly to general relativity when the momentumenergy complex is symmetric and all matter fields are spin-free. Gravitational effects on neutral test particles are shown to arise from the compensating 1-forms for local action of Lorentz boosts. The compensating 1-forms for local action of the translation subgroup may be interpreted as space-time dislocations, while the compensating 1-forms for the rotation subgroup can be viewed as space-time disclinations. Unfortunately, there are no clear physical meanings that can be ascribed to space-time dislocations or disclinations.  相似文献   

16.
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf ? 1038GN (GN being the Newtonian constant) and a cosmological term λf ?;μν (?;μν is strong gravity metric and λf ~ 1028 cm? is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature ~10?14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length ~2 × 10?14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-12 particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.  相似文献   

17.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

18.
The role of antisymmetric tensor fields in the gauging of groups is related to theorems on cohomology theory, and Cartan integrable systems are discussed. Examples are given. Various possibilities to gauge d = 11 supergravity by decontracting its underlying group are considered. In particular the simple supergroups Osp (1 | 64) and SU(32 | 1) yield a negative result, but a certain non-semisimple supergroup containing Osp (1 | 32) is proposed as a viable candidate. The corresponding action would no longer contain the 3-index photon Aμν?, but instead a second spin 32 field ημ and boson fields Bμa1a2 and Bμa1…a5. A first order formalism for d = 11 is presented. It is to be used for an improved form of dimensional reduction.  相似文献   

19.
The relations betweeb a field FμνM satisfying the usual Maxwell equations and a field FμνD satisfying the symmetric Maxwell-Dirac equations, and the singular potential solving both of these is given. The action principle is formulated in both forms and the reality of the string is shown. A string with spin is constructed by placing electric charges at its end-points. The motion and interactions of the string, the relation between flux and angular momentum quantization and the passage to two-body Hamiltonians are examined.  相似文献   

20.
《Nuclear Physics B》1998,527(3):717-737
The Wk structure underlying the transverse realization of affine SU(2) at level k is analyzed. The extension of the equivalence existing between the covariant and light-cone gauge realization of an affine Kac-Moody algebra to Wk algebras is given. Higher spin generators are extracted by the less singular terms in the operator product expansion of the parafermions constructed by means of the projection of the covariant on the light-cone gauge. These fields can be written in terms of only one free boson compactified on a circle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号