首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用去湿现象制备图案化的离子刻蚀聚合物保护层   总被引:3,自引:0,他引:3  
微米和纳米尺度的图案化表面的制备在微电子、光学、生物、化学和材料科学等领域具有重要的科学意义和应用价值 [1~ 3 ] .由于需要复杂昂贵的设备和苛刻的工作环境 ,光刻技术难以广泛应用于微电子以外的领域 ,因此 ,发展简单、便宜、适用于普通实验室 (尤其是化学实验室 )的表面图案化技术已成为一个涉及众多学科领域的课题 .在近年来不断涌现出来的物理、化学和生物的表面图案化技术 [4~ 6]中 ,最具代表性的是由 Whitesides等 [7]发明的以表面具有微观图案的聚二甲基硅氧烷 (PDMS)弹性体作为模具或印章的软光刻技术 .结合溶胶 -凝胶、…  相似文献   

2.
结合毛细管微模塑技术、模板技术和先驱体转化技术, 以图案化聚二甲基硅氧烷(PDMS)弹性体为模具,以氧化硅凝胶小球为模板, 以液态聚碳硅烷(PCS)为先驱体, 经过氧化硅凝胶小球图案化模板的形成, 先驱体的渗入, 模板中先驱体的交联, 弹性模具的去除, 图案化先驱体的无机化和模板的去除, 制备了图案化多孔SiC 陶瓷.研究结果表明:所制备的图案化多孔陶瓷中, 图案的尺寸受图案化PDMS 弹性模具的控制, 球形孔的孔径可由氧化硅凝胶小球来调节. 图案化陶瓷中球形孔不仅三维有序排列, 而且由于模板中小球的相互接触形成的“窗 口”使球形孔三维贯通.  相似文献   

3.
We present herein a simple protocol of growing a patterned ZnO nanowire by etching of ZnO seed layer in the tetramethyl ammonium hydroxide (TMAH) solution. The ZnO seed layer was fabricated by sol–gel method using zinc acetate solution and patterned by using photolithographic method. Patterned ZnO seed layer as etched in the TMAH solution, followed by growth of ZnO nanowires by hydrothermal method. Remarkable point of present ZnO seed layer patterning is that development of UV-exposed photoresist and etching of ZnO seed layer is subsequently processed in aqueous TMAH solution without interruption. The grown ZnO nanowires were analyzed using XRD patterns to exhibit high purity and degree of crystallinity, and showed very good pattern fidelity.  相似文献   

4.
We describe the use of hard etching methods to create nanodimensional channels and their use as templates for the formation of polymer filament arrays with precise dimensional and orientational control in a single integrated step. The procedure is general as illustrated by the radical, coordination, and photochemical polymerizations that were performed in these nanochannels. The nanochannel templates (20 nm high, 20-200 nm wide, and 100 mum long) were fabricated by the combined use of electron-beam lithography and a sacrificial metal line etching technique. Radical polymerization of acrylates, metal-catalyzed polymerization of norbornene, and photochemical polymerization of 1,4-diiodothiophene were carried out in these nanochannels. The polymers grown follow the dimensions and orientation of the channels, and the polymer filaments can be released without breaking. The approach opens up the possibility of just-in-place manufacturing and processing of patterns and devices from nanostructured polymers using well-established polymer chemistry.  相似文献   

5.
This paper reports a simple, additive process to generate patterned polymer films without using any solvent. This process involves a highly efficient catalyst, a Grubbs's catalyst, and a volatile monomer, norbornene. The catalyst and monomers have higher local concentrations inside the microchannels, formed by contacting poly(dimethylsiloxane) stamps to a solid surface, and allow the polymeric thin films to be defined by the microchannels. The patterned thin film serves as an excellent resistant to reactive ion etching, which promises that this process is a complementary, useful alternative to spin-coating and plasma polymerization in microfabrication.  相似文献   

6.
We report two-dimensional mesoscopic and macroscopic patterns observed in thin films formed due to polymerization of aniline at the air-water interface. The polymerization at the interface was coupled to a reaction in the bulk medium that was either an iron (ferroin)-catalyzed Belousov-Zhabotinsky (BZ) reaction or another reaction condition where the ferroin component of BZ reaction was replaced by FeSO(4) or Mohr's salt [(NH(4))(2)SO(4).FeSO(4).6H(2)O]. Also, a simple mixture of KBrO(3) and KBr in aqueous acidic solution produced patterned polymers at the interface, observed with aniline introduced from both the vapor phase and the bulk phase (by dissolving in H(2)SO(4)). Observation under an optical microscope revealed that the macroscopic patterns consisted of mesoscopic patterns of various geometrical shapes. In one case, regular circular mesoscopic patterned polymer growth was observed when the reaction was carried out in the presence of 2.02 mM sodium dodecyl sulfate. On the other hand, when the film was grown in an ultrasonicator bath there were no observable mesoscopic or macroscopic patterns in the film.  相似文献   

7.
Cone-shaped patterned sapphire substrate was prepared by inductively coupled plasma etching and GaN nucleation layer was grown on it by metal-organic chemical vapor deposition.A selective growth of GaN nucleation layer was found on the slope of the cone-shaped patterned sapphire substrat,and the distribution morphology of GaN had significantly changed after it was recrystallized.GaN selective growth and redistribution were analyzed by investigating the distribution of crystallographic planes on the cone surface and the atom array of specific planes at atom level.  相似文献   

8.
Si convex arrays and Si hole arrays with ordered periodicities were fabricated by the site-selective chemical etching of a Si substrate using patterned Ag nanoparticles as a catalyst. Ag particles were deposited selectively on the Si substrate by a combination of colloidal crystal templating, hydrophobic treatment and subsequent electroless plating. The obtained Ag patterns were of two different types: network-like honeycomb and isolated-island microarrays. The transfer of ordered patterns fabricated by Ag plating onto the Si substrate could be achieved by the selective chemical etching of a Ag-coated Si area using Ag particles as the etching catalyst. On the basis of this process, it is possible to fabricate negative and positive patterns by changing the arrangement of deposited Ag patterns.  相似文献   

9.
Combining inkjet printing and atom-transfer radical polymerization (ATRP) provides a straightforward and versatile method for producing patterned polymer surfaces that may serve as platforms for a variety of applications. We report the use of drop-on-demand technology to print binary chemical gradients and simple patterns onto solid substrates and, by using surface-confined ATRP, amplify these patterns and gradients. Chemically graded monolayers prepared by inkjet printing dodecanethiol and backfilling with 11-mercaptoundecanol showed continuous changes in the water contact angle along the gradient. These samples also exhibited a distinct change in the intensity of methyl group and C-O stretching modes along the gradient. Graded or patterned polymer layers were produced by growing, with ATRP, tethered poly(methyl methacrylate) (PMMA) layers from gradient or patterned printed monolayers that contained a bromo-capped initiator. Atomic force microscopy and optical microscopy confirmed that the PMMA layers amplified the underlying printed initiator layer with remarkable fidelity.  相似文献   

10.
The nonlinear optical processes involved in etching thin polymer films by direct-write multiphoton photolithographic methods (Higgins et al. Appl. Phys. Lett. 2006, 88, 184101) are systematically explored. Power-dependent etching data are obtained for thin films of several commercial polymers, including poly(methyl methacrylate) (PMMA), polystyrene (PS), poly(butyl methacrylate) (PBMA), and poly[2-(3-thienyl)ethyloxy-4-butylsulfonate] (PTEBS). Femtosecond pulses of light from a Ti:sapphire laser are focused to a diffraction limited spot of approximately 570 nm 1/e2 diameter in the films to induce etching. The power dependence of etching in each polymer is used to determine the order of the nonlinear optical process involved. The results for PMMA and PBMA, both of which absorb to the blue of 240 nm, demonstrate that etching involves absorption of several (i.e., 4-6) photons by the polymer, whereas PS, which absorbs wavelengths shorter than 280 nm, is etched by a lower-order process involving fewer (i.e., 3-4) photons. PTEBS, a conducting polymer that absorbs in the visible, is etched by a two-photon process. The results are consistent with an etching mechanism that involves multiphoton-induced depolymerization of the polymer, followed by vaporization of the resulting fragments. The etching resolution is found to be highest for polymers having high glass transition temperatures, low molecular weights, and no visible absorption. Among the polymers examined, low molecular weight PMMA is concluded to be the best polymer for use with this lithographic method. Finally, soft lithography is used to transfer patterns produced in a PMMA film onto poly(dimethylsiloxane), demonstrating a simple means for fabricating submicrometer-scale structures for use in micro- and nanofluidic devices.  相似文献   

11.
用十八烷基三氯硅烷(OTS)/正己烷溶液为印墨在玻璃基片上进行微接触印刷,得到图案化的自组装层,然后以此对聚苯乙烯溶液进行诱导分布,并在苯胺溶液中对其进行诱导聚合反应生长出聚苯胺微图形。直接用聚合物溶液作为印墨制作了环氧树脂微条纹和聚苯乙烯两层交叉微结构。  相似文献   

12.
We report a general, simple, and inexpensive approach to pattern features of self-assembled monolayers (SAMs) on silicon and gold surfaces using porous anodic alumina films as templates. The SAM patterns, with feature sizes down to 30 nm and densities higher than 10(10)/cm(2), can be prepared over large areas (>5 cm(2)). The feature dimensions can be tuned by controlling the alumina template structure. These SAM patterns have been successfully used as resists for fabricating gold and silicon nanoparticle arrays on substrates by wet-chemical etching. In addition, we show that arrays of gold features can be patterned with 10-nm gaps between the dots.  相似文献   

13.
Stacked thin layers of silver alloy (AgPdCu) and MoCr layers on 10 x 15 cm2 glass substrates were patterned by microcontact wave printing and etching. Patterns of etch-resistant octadecanethiol self-assembled monolayers (SAMs) were wave printed with regular backplane stabilized PDMS stamps. Pattern development was achieved by etching both metal layers in a single step, employing a nitric acid-based etching bath. Trifluoroacetic acid and a nitrite salt were identified as essential bath components for a homogeneous etching process. Etch defects could be eliminated by the addition of a decanesulfonate, which stabilizes the SAM resist via a defect healing mechanism.  相似文献   

14.
The objective of this work was to investigate whether or not the hydrogen bonding interaction between polymer and crystal surface can be detected by the etching pattern changes in the presence of polymers. The (010) face of acetaminophen single crystal was used as a model solid surface. The etching patterns on the (010) face of acetaminophen crystal by water are in the directions of a- and c-axes, which are the same as the directions of the dominant attachment energies on the (010) face. In the presence of polymer, the hydrogen bonding interactions between adsorbed polymer and crystal surface can affect surface diffusion of acetaminophen molecules and change the etching patterns in the direction of a-axis, i.e., the direction of one hydrogen bond chain. Studies with 2-hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PVA) showed that polymers, which can form hydrogen bonds with acetaminophen crystal surface, can change etching patterns in the direction of a-axis. Study with Dextran suggested that if a polymer cannot form hydrogen bonds with crystal surface due to steric repulsion, it will not change the etching pattern in the direction of a-axis. Studies with poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) further confirmed that only if a polymer can form hydrogen bonds with acetaminophen on crystal surface, the etching patterns in the direction of a-axis will be affected. The study results suggest that in the presence of polymers, the etching pattern change in the direction of hydrogen bond chain, the a-axis of acetaminophen crystals, can be used to indicate the existence of the hydrogen bonding interactions between adsorbed polymers and acetaminophen crystal surface.  相似文献   

15.
A novel photolithography method to build aligned patterns of two different proteins is presented. Chessboard patterns of 125 microm x 125 microm squares are constructed on a silicon dioxide substrate, using standard photoresist chemistries in combination with low-temperature oxygen plasma etching. Low-melting-point agarose (LMPA) is used to protect underlying protein layers and, at the appropriate stage, the digestive enzyme GELase (EPICENTRE) is used to selectively remove the prophylactic LMPA layers. Two antibodies, mouse-IgG and human-IgG, were immobilized and patterned by this procedure. The patterned antibodies maintained the specificity of their antigen-antibody binding, as demonstrated by fluorescence microscopy. In addition, normalized fluorescence intensity profiles illustrate that the patterned proteins layers are uniform (standard deviations below 0.05). Finally, a trypsin activity test was conducted to probe the effect of the patterning protocol on immobilized enzymes; the results imply that this photolithographic process using LMPA as a protection layer preserves 70% of immobilized enzyme activity.  相似文献   

16.
This paper describes a fabrication strategy based on polymer brushes (20-150 nm thick) and soft lithographic techniques, for creating hydrophobic, cross-linked, laterally patterned polymer films. The hydrophobicity of the resulting micrometer-scale "quasi-2D" objects is shown to allow the polymer to act as an etch resist. By adjusting the etching time, we demonstrate that underetching of the gold from underneath the edges of the laterally patterned films can be used to create free-standing polymer-gold hybrid structures. These structures retain their structural integrity when lifted wholly or partially from the substrate and can hence be imaged in suspension. Characterization of the quasi-2D objects was carried out using atomic force microscopy (AFM), ellipsometry, optical microscopy, and Fourier transform infrared spectroscopy (FTIR). A continuous film, containing embedded polymer-gold objects, can be lifted, folded, and re-deposited onto a substrate without damaging the conductivity of the embedded metallic objects.  相似文献   

17.
We report the use of a cobalt-clusterized polyferrocenylsilane (Co-PFS) as a precursor to patterned ferromagnetic ceramics. Co-PFS was synthesized. Functioning as a negative resist, Co-PFS lines with widths of 10-300 μm were patterned using UV-photolithography, while features as small as 500 nm were afforded by electron-beam lithography. Subsequent pyrolytic treatment of the lithographically patterned Co-PFS yielded ferromagnetic ceramics containing Fe/Co nanoparticles. Due to its high metal-loading, Co-PFS is a good etch resist for oxygen and hydrogen plasma reactive ion etching. Reactive ion etching of a thin film of Co-PFS in a secondary magnetic field allowed direct access to ferromagnetic ceramic films, providing a viable alternative to pyrolysis.  相似文献   

18.
Patterned polymer structures with different functionalities have many potential applications. Directed assembly of polymer blends using chemically functionalized patterns during spin-coating has been used to fabricate the patterned polymer structures. For bridging the gap between laboratorial experiments and manufacturing of nanodevices, the polymer blends structures are required to be precisely patterned into nonuniform geometries in a high-rate process, which still is a challenge. In this Article, we demonstrated for the first time that by decreasing the interfacial tension between two polymers polystyrene and poly(acrylic acid) via adding a compatibilizer (polystyrene-b-poly(acrylic acid) ), a polystyrene/poly(acrylic acid) blend was precisely patterned into nonuniform geometries in a high-rate fashion. The patterned nonuniform geometries included angled lines with angles varied from 30° to 150°, T-junctions, square arrays, circle arrays, and arbitrary letter-shaped geometries. The reduction in the interfacial tension improved the line edge roughness and the patterning efficiency of the patterned polymer blends. In addition, the commensurability between characteristic length and pattern periodicity for well-ordered morphologies was also expanded with decreasing interfacial tension. This approach can be easily extended to other functional polymers in a blend and facilitate the applications of patterned polymer structures in biosensors, organic thin-film electronics, and polymer solar cells.  相似文献   

19.
Porous surface patterns are used in a wide variety of practical applications. Honeycomb‐patterned porous polymer films are good templates for preparing porous surfaces due to their simple fabrication and the arrangement of pores on the surface. Catechol groups include in adhesive protein of mussels have attracted much attention due to their highly and substrate‐independent adhesive properties. In this paper, highly and substrate‐independent adhesive honeycomb‐patterned porous polymer films are prepared by using amphiphilic copolymer having catechol moieties. Furthermore, porous surface patterns are transferred on various organic or inorganic substrates by wet etching with using adhesive honeycomb films as templates.

  相似文献   


20.
We report a route for synthesizing patterned carbon nanotube (CNT) catalysts through the microcontact printing of iron-loaded poly(styrene-block-acrylic acid) (PS-b-PAA) micellar solutions onto silicon wafers coated with thin aluminum oxide (Al(2)O(3)) layers. The amphiphilic block copolymer, PS-b-PAA, forms spherical micelles in toluene that can form quasi-hexagonal arrays of spherical PAA domains within a PS matrix when deposited onto a substrate. In this report, we dip a poly(dimethylsiloxane) (PDMS) molded stamp into an iron-loaded micellar solution to create a thin film on the PDMS features. The PDMS stamp is then put in contact with a substrate, and uniaxial compressive stress is applied to transfer the micellar thin film from the PDMS stamp onto the substrate in a defined pattern. The polymer is then removed by oxygen plasma etching to leave a patterned iron oxide nanocluster array on the substrate. Using these catalysts, we achieve patterned vertical growth of multiwalled CNTs, where the CNTs maintain the fidelity of the patterned catalyst, forming high-aspect-ratio standing structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号