首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Fe film (∼50 nm) have been deposited on pSi substrate by electron beam evaporation technique. The bilayers have been irradiated by 100 MeV Fe7+ ions having fluences of 1 × 1013, 1 × 1014 and 5 × 1014 ions cm−2. SEM study of the unirradiated devices show surface modifications having a annular structures. From XRD study of the bilayer, it is observed that grain size has reduced from 70 to 25 nm after the irradiation for a fluence of 1 × 1014 ions cm−2. Moreover electronic transport data of the bilayer show practically no effect on the current flow for a fluence of 1 × 1013 ions cm−2 irradiation whereas for 1 × 1014 ions cm−2 fluence, there is very significant change in current flow (by two orders in magnitude) across the bilayer. However, for a higher fluence of irradiation 5 × 1014 ions cm−2, the bilayer becomes highly resistive. It has been found from the above observations that the fluence of 1 × 1014 ions cm−2 of swift heavy ion irradiation is a optimum fluence.  相似文献   

2.
By analyzing the radiation dose on PIN photodetectors in space radiation environment, the variation of photocurrent and dark current after radiation is obtained. On the basis, the bit error rate of satellite laser communication based on space radiation dose of PIN photodetectors is established. According to simulation, when radiation dose is about 1.6 × 103 Gy and 7 × 104 Gy, bit error rate reaches 10−6 induced by 50 MeV and 10 MeV protons separately; and when radiation dose is within the range of 5 × 10 Gy–6 × 105 Gy, electrons and gamma-ray irradiation also cause increase in bit error rate to 10−6. The principle of damage dose on bit error rate is investigated, and the influence of decision threshold on bit error rate is further discussed. The result shows that when radiation dose is 1 MGy, if decision threshold is increased from 4.3 × 10−7 A to 5.5 × 10−7 A, bit error rate will decrease about 4 orders of magnitude. Hence, a proper decision threshold can improve system bit error rate efficiently.  相似文献   

3.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

4.
A study of silicon modification induced by a high intensity picosecond Nd:YAG laser, emitting at 1064 nm, is presented. It is shown that laser intensities in the range of 5 × 1010-0.7 × 1012 W cm−2 drastically modified the silicon surface. The main modifications and effects can be considered as the appearance of a crater, hydrodynamic/deposition features, plasma, etc. The highest intensity of ∼0.7 × 1012 W cm−2 leads to the burning through a 500 μm thick sample. At these intensities, the surface morphology exhibits the transpiring of the explosive boiling/phase explosion (EB) in the interaction area. The picosecond Nd:YAG laser-silicon interaction was typically accompanied by massive ejection of target material in the surrounding environment. The threshold for the explosive boiling/phase explosion (TEB) was estimated to be in the interval 1.0 × 1010 W cm−2 < TEB ≤ 3.8 × 1010 W cm−2.  相似文献   

5.
The isomerization of 1-naphthylacetylene diluted in argon was studied behind reflected shock waves in a 2 in i.d. single pulse shock tube over the temperature range 1000-1250 K and overall densities of ∼3 × 10−5 mol/cm3. The only reaction product found in the post shock mixtures was acenaphthylene. The first order rate constant of the isomerization was found to be k = 2.08 × 1012 exp(−54.2 × 103/RT) s−1, where R is expressed in units of cal/K mol. Potential energy surfaces of the cyclization reaction 1-naphthylacetylene → acenaphthylene and the isomerization 1-naphthylacetylene → 2-naphthylacetylene were calculated using the Becke three-parameter hybrid method with Lee-Yang-Parr correlation functional approximation (B3LYP). Structure, energy and frequency calculations were carried out with the Dunning correlation consistent polarized double ζ (cc-pVDZ) basis set. The rate constant (k) for the 1-naphthylacetylene → acenaphthylene cyclization was calculated using transition state theory, the value obtained is k = 3.52 × 1012 exp(−55.9 × 103/RT) s−1, where R is expressed in units of cal/K mol. The agreement between the experiment and the calculations is very good. RRKM calculations were done to transfer k to the pressure of the single pulse shock tube experiments. In view of high temperature and the large molecule involved the deviation from k is very small. The isomerization 1-naphthylacetylene → 2-naphthylacetylene proceeds via the formation of an unstable intermediate 1,2-naphthalenocyclobutene and has a high barrier of ∼83.5 kcal/mol. In view of this high barrier, the isomerization cannot compete with the cyclization that proceeds with a barrier of ∼56 kcal/mol.  相似文献   

6.
We demonstrate a gradual surface modification process of relaxed Si0.5Ge0.5 alloy films by 100 MeV Au beam with fluence varying between 5 × 1010 and 1 × 1012 ions/cm2 at 80 K by means of atomic force microscopy (AFM). Presence of Ge quantum dots (QDs) was found in the virgin sample. The disappearance of the QDs were noticed when the samples were irradiated with a fluence of 5 × 1010 ions/cm2. Craters were found developing at a fluence of 1 × 1011 ions/cm2. Apart from the evolution of the craters, blisters were also detected at a fluence of 1 × 1012 ions/cm2. Variation of the average root mean square value of the surface roughness as a function of fluence was examined.  相似文献   

7.
It is found that the fluorescence intensity of Tb3+-oxolinic acid (OA) complex can be greatly quenched by albumins in sodium dodecyl sulphate (SLS). Under optimum conditions, the quenched fluorescence intensity is in proportion to the concentration of proteins in the range of 5.0×10−8-1.0×10−5 g ml−1 for bovine serum albumin (BSA), 1.0×10−7-1.0×10−5 g ml−1 for human serum albumin (HSA) and 4.0×10−7-1.0×10−5 g ml−1 for egg albumin (EA). Their detection limits (S/N=3) are 2.1×10−8, 2.5×10−8 and 5.0×10−8 g ml−1, respectively. In addition, the interaction mechanism is also investigated.  相似文献   

8.
The photocarrier mobility of Fe 0.03 wt%-doped potassium lithium tantalate niobate (K0.95Li0.05Ta0.61Nb0.39O3) was investigated by time-of-flight (TOF) measurement. The longitudinal photocarrier response due to pulsed excitation leads to values of the drift mobility of μh = 1.45 × 10−2 cm2/V s for holes, μe = 0.325 × 10−2 cm2/V s for electrons, and a value for the range of holes (μτ)h = 4.38 × 10−5 cm2/V at room temperature and at low field 3 KV/cm. The response time of holes and electrons (or the relaxation time) is determined to be 3.02 × 10−3 s and 3.74 × 10−3 s, respectively. The mobility of holes strongly depends on the field strength, and is observed to decrease with increasing bias field.  相似文献   

9.
The electrical and optical characteristics of platinum (Pt) diffusion in n-type gallium nitride (GaN) film are investigated. The diffusion extent was characterized by the SIMS technique. The temperature-dependent diffusion coefficients of Pt in n-GaN are 4.158 × 10−14, 1.572 × 10−13 and 3.216 × 10−13 cm2/s at a temperature of 650, 750 and 850 °C, respectively. The Pt diffusion constant and activation energy in GaN are 6.627 × 10−9 cm2/s and 0.914 eV, respectively. These results indicate that the major diffusion mechanism of Pt in GaN is possibly an interstitial diffusion. In addition, it is also observed that the Pt atom may be a donor because the carrier concentration in Pt-diffused GaN is higher than that in un-diffused GaN. The optical property is studied by temperature-dependent photoluminescence (PL) measurement. The thermal quenching of the PL spectra for Pt-diffused GaN samples is also examined.  相似文献   

10.
The transport of Na through the polycrystalline ceramic arc tube of high intensity discharge lamps has been investigated. This complex process consists of several steps: solution in the ceramics, diffusion through the ceramics, leaving the bulk phase, evaporation from the surface. Among the listed processes the kinetics of the diffusion was examined in the temperature range 400-1200 °C, separately from other disturbing effects. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to determine the concentration depth profiles. The obtained results confirmed that the grain boundary diffusion plays an important role in the transport process of sodium through the ceramic wall. The bulk and the grain boundary diffusion coefficients and the temperature dependencies of these transport processes have been determined. The activation energy of Na bulk diffusion is 56.5 ± 6.7 kJ/mol at 900-1200 °C, respectively the activation energies of Na grain boundary diffusion amount to 97.5 ± 21.6 kJ/mol in the temperature range 700-1100 °C and 7.7 ± 4.0 × 10−2 kJ/mol at 400-700 °C. The preexponential factor of the bulk diffusion was found to be Do = 5.1 × 10−15 ± 9.5 × 10−17 cm2/s in the temperature range 900-1200°C, whereas the preexponential factors of grain boundary diffusion are Do = 1.1 × 10−10 ± 1.1 × 10−11 cm2/s at 700-1100 °C and Do = 7.5 × 10-15 ± 1.5 × 10−17 cm2/s at 400-700 °C.  相似文献   

11.
We measure the frequency of the 5s21S0-5s5p 3P0 narrowline clock transition at 236.5 nm, for a single, trapped and laser cooled 115In+ ion. In the experiment, an ultra-narrow linewidth laser (<1.34 Hz at 3 s integration time) is used to interrogate the clock transition for high resolution spectroscopy. A linewidth of 43 Hz of the clock transition is observed. The uncertainty of the line centroid is 18 Hz, leading to a fractional uncertainty of 1.4×10-14. The frequency is measured by using an optical frequency comb referenced to a cesium clock. The transition frequency is found to be 1, 267, 402, 452, 901.265 (256) kHz, averaged over 13 days of separate measurement. The accuracy of 2.35×10-13 is due to the reference cesium clock calibrated against UTC time. We discuss ways for further improvements.  相似文献   

12.
In this paper, a novel dispersion-shifted multi-clad optical fiber with very small bending loss and ultra-high bit-rate applicable for large capacity information transmission systems is presented. To decrease dispersion and higher-order dispersion effects at λ = 1.55 μm, a weighted pulse broadening factor and genetic algorithm (GA) optimization technique is used. Compared to the works reported previously, this method can precisely set the zero-dispersion wavelength. This kind of dispersion-shifted fibers has dispersion, dispersion slope, mode field diameter (MFD), effective area and quality factor within −1.40 × 10−4 to −8.44 × 10−2 ps/km nm, 3.06 × 10−2 to −4.07 × 10−2 ps/km nm2, 5.56−5.85 μm, 119.25−176.42 μm2 and 3.49-5.27 at λ = 1.55 μm, respectively. Besides, by applying dispersion at λ = 1.55 μm as the cost function, dispersion of about 1.31 × 10−8 ps/km nm is obtained. Thus, this novel optical fiber can be used in long-haul high information-transmission capacity communication systems.  相似文献   

13.
We measured the photoluminescence (PL) spectra of a two-dimensional electron system induced in a Be-δ-doped GaAs/AlGaAs quantum well (QW) with a back gate. The electron density is controlled by means of the back-gate voltage. We estimated the electron density using the magneto-optical method and the PL linewidth, and also by undertaking transport measurements. We show that a uniform 2DES as large as 1 mm2 is induced by the back-gate operation from 2.5 × 1010 cm−2. This experiment indicates that optical measurement with a back-gated QW is advantageous for studying the low-density 2DES.  相似文献   

14.
This research investigates the effect of ion implantation dosage level and further thermal treatment on the physical characteristics of chromium coatings on Si(1 1 1) substrates. Chromium films had been exposed to nitrogen ion fluencies of 1 × 1017, 3 × 1017, 6 × 1017 and 10 × 1017 N+ cm−2 with a 15 keV energy level. Obtained samples had been heat treated at 450 °C at a pressure of 2 × 10−2 Torr in an argon atmosphere for 30 h. Atomic force microscopy (AFM) images showed significant increase in surface roughness as a result of nitrogen ion fluence increase. Secondary ion mass spectroscopy (SIMS) studies revealed a clear increased accumulation of Cr2N phase near the surface as a result of higher N+ fluence. XRD patterns showed preferred growth of [0 0 2] and [1 1 1] planes of Cr2N phase as a result of higher ion implantation fluence. These results had been explained based on the nucleation-growth of Cr2N phase and nitrogen atoms diffusion history during the thermal treatment process.  相似文献   

15.
Ferromagnetic Resonance (FMR) measurements at room temperature and X-band microwave frequency were performed on polycrystalline FePt thin films with face-centered cubic structure. With the external field perpendicular to the film plane, the absorption fields Hn of the odd and even spin-wave resonance modes n detected for the Fe0.44Pt0.56(45 nm)/Si(1 0 0) and Fe0.51Pt0.49(105 nm)/Pt(55 nm)/MgO(1 0 0) films, were found to obey the well-known Hn×n2 ratio, giving for these films the exchange stiffness constant values of 3.9×10−8 and 4.4×10–7 erg/cm, respectively. The study of the out-of-plane angular dependence of the absorption field of the uniform FMR mode allowed the measurement of the effective magnetic anisotropy constants of 5.3×106 , 6.4×106 , and 6.7×106 erg/cm3, related, respectively, to the [1 1 1], [1 0 0], and [1 1 0] textures present in the films.  相似文献   

16.
The gain characteristics of ErxY2 − xSiO5 waveguide amplifiers have been investigated by solving rate equations and propagation equations. The gain at 1.53 μm as a function of waveguide length, Er3+ concentration and pump power is studied pumping at three different wavelengths of 654 nm, 980 nm and 1480 nm, respectively. The optimum Er3+ concentrations of 1 × 1021 cm− 3-2 × 1021 cm− 3 with the high gain are obtained for all three pump wavelengths. Pumping at 654 nm wavelength is shown to be the most efficient one due to weak cooperative upconversion. A maximum 16 dB gain at 1 mm waveguide length under a 30 mW pump with Er3+ concentration of 1 × 1021 cm− 3 is demonstrated pumping at 654 nm wavelength.  相似文献   

17.
Surface phase diagrams of GaN(0 0 0 1)-(2 × 2) and pseudo-(1 × 1) surfaces are systematically investigated by using our ab initio-based approach. The phase diagrams are obtained as functions of temperature T and Ga beam equivalent pressure pGa by comparing chemical potentials of Ga atom in the vapor phase with that on the surface. The calculated results imply that the (2 × 2) surface is stable in the temperature range of 700-1000 K at 10−8 Torr and 900-1400 K at 10−2 Torr. This is consistent with experimental stable temperature range for the (2 × 2). On the other hand, the pseudo-(1 × 1) phase is stable in the temperature range less than 700 K at 10−8 Torr and less than 1000 K at 10−2 Torr. Furthermore, the stable region of the pseudo-(1 × 1) phase almost coincides with that of the (2 × 2) with excess Ga adatom. This suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1 × 1) to the (2 × 2) with Ga adatom and vice versa.  相似文献   

18.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

19.
Ion beam mixing is a useful technique to produce modifications at the surface and interface of the solid material. In the present work, ion beam induced modifications at Co/Si interface using 120 MeV Au-ion irradiation has been studied at ion fluences in the range of 1012 to 1014 ions/cm2 by secondary ion mass spectroscopy (SIMS) technique and calculated mixing efficiency at the interface. Silicide formation has been discussed on the basis of swift heavy ion (SHI) irradiation induced effects. Surface morphology and roughness of irradiated system with fluence 5 × 1013 and 1 × 1014 ions/cm2 is studied by scanning tunneling microscopy (STM). Roughness of the surface shows marks of melting process and confirms the appearance of some pinholes in the reacted Co/Si system. Comparative study was also undertaken on annealed sample at 300 °C and then irradiated at a dose 1 × 1014 ions/cm2.  相似文献   

20.
Pellets of nanocrystalline aluminum oxide synthesized by a combustion technique are irradiated with 120 MeV Au9+ ions for fluence in the range 5×1011-1×1013 ions cm−2. Two photoluminescence (PL) emissions, a prominent one with peak at ∼525 nm and a shoulder at ∼465 nm are observed in heat treated and Au9+ ion irradiated aluminum oxide. The 525 nm emission is attributed to F22+-centers. The PL intensity at 525 nm is found to increase with increase in ion fluence up to 1×1012 ions cm−2 and decreases beyond this fluence. Thermoluminescence (TL) of heat-treated and swift heavy ion (SHI) irradiated aluminum oxide gives a strong and broad TL glow with peak at ∼610 K along with a weak shoulder at 500 K. The TL intensity is found to increase with Au9+ ion fluence up to 1×1013 ions cm−2 and decreases beyond this fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号