首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Potassium substituted nanosized magnesium aluminates having a nominal composition Mg1−xKxAl2O4 where x=0.0, 0.25, 0.5, 0.75, 1.0 have been synthesized by the chemical co-precipitation method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and dc electrical resistivity measurements. The XRD results reveal that the samples are spinel single phase cubic close packed crystalline materials. The calculated crystallite size ranges between 6 and 8 nm. The behaviour of the lattice constant seems to deviate from the Vegard's law. While X-ray density clearly increases, the bulk density and consequently, the percentage porosity do not exhibit a significant change on increasing the K+ content. The SEM micrographs suggest homogeneous distribution of the nanocrystallites in the samples. The dc electrical resistivity exhibits a typical semiconducting behaviour. Substitution of a Mg2+ ion by a K+ ion provides an extra hole to the system, which forms small polaron. Thermally activated hopping of these small polarons is believed to be the conduction mechanism in the Mg1−xKxAl2O4. The activation energy of hopping of small polarons has been calculated and found K+ ions content dependent.  相似文献   

2.
DC electrical conductivity (σdc) of electron-doped antiferromagnetic CaMn1−xCrxO3 (0?x?0.3) has been discussed elaborately in the light of polaron hopping conduction. The increase in Cr doping concentration increases the conductivity and decreases the activation energy. Non-adiabatic polaron hopping conduction is observed in all the manganites at high temperatures. The analysis of σdc data shows that small polarons are formed at lower concentrations (?5%) of Cr doping and undoped samples. However, large polarons are materialized at higher doping (?10%) concentrations. This is consistent with the fact that doped Cr3+ has larger ionic size compared to that of Mn4+. Again, strong electron-phonon (e-ph) interaction is perceived in undoped and 5% Cr-doped samples but not in manganites with larger doping concentration. This also confirms the formation of larger polarons with the increase of x. Mott's variable range hopping (VRH) model can elucidate the dc conductivity at very low temperatures. It has been detected that single phonon-assisted hopping is responsible for the dc conduction in the Cr-doped CaMnO3 manganites.  相似文献   

3.
The electrical properties and the mechanism of conduction of the simultaneously substituted La0.7−xYxBa0.3Mn1−xFexO3 perovskite (0≤x≤0.30) have been studied. The insertion of Y3+ and Fe3+ ions in the parent compound La0.7Ba0.3MnO3 leads to an increase of the resistivity. The undoped sample (x=0) shows a metallic behavior, which can be fitted by the relation ρ(T)=ρ0+ρ2T2+ρ4.5T4.5, indicating the importance of electron-magnon scattering effects in this material. All the other samples (x≥0.10) are semiconductors throughout the studied temperature range (80-290 K). Several models have been used to fit their temperature-dependent resistivity: thermal activation, adiabatic nearest-neighbor hopping of small polarons (Holstein theory) and variable range hopping (VRH) models. The fits show that the electronic transport in semiconducting La0.7−xYxBa0.3Mn1−xFexO3 is well described and dominated by the VRH mechanism, for which the hopping distance (a) grows with increasing Fe3+ doping, thus increasing the average hopping energy W.  相似文献   

4.
Synthesis by arc melting, the structural and the electric properties of Y(Co1−xNix)2 alloys were studied by X-ray diffraction (XRD) and four probe dc electrical measurements. XRD analysis (300 K) shows that all samples crystallize in a cubic MgCu2-type structure. The lattice parameters linearly decrease with Ni content. Electrical resistivity for the Y(Co1−xNix)2 intermetallic series was measured in a temperature range of 15-1100 K. The parameters involved in the dependence of resistivity on temperature were determined. Residual, phonon and spin fluctuations resistivity were separated from electrical resistivity using both the Matthiesen formula and the Bloch-Gruneisen formula. The spin fluctuations resistivity of the Y(Co1−xNix)2 series are compared to the mean square amplitudes of spin fluctuations previously calculated by the Linear Muffin Tin Orbital-Tight Binding Approach method for these series in the literature. The contribution of spin fluctuations to total resistivity ρsf is proportional to T2 at low temperatures. The proportionality parameter strongly reduces across the Y(Co1−xNix)2 series.  相似文献   

5.
A series of polycrystalline M-type hexagonal ferrites with the composition Sr0.5Ca0.5CoxTixFe12−2xO19 (where x=0.0-0.8) were prepared by the conventional ceramic technique. The electrical conductivity has been measured from 300 to 590 K. The dc conductivity, σdc, exhibited a semiconductor behavior. The negative sign of thermoelectric power coefficient S reveals that all samples are n-type semiconductors. Both σdc and mobility, μd, increases with the substitution of Co2+ and Ti4+ ions, reach maximum at x=0.4 and start decreasing at x>0.4. Many conduction mechanisms were discussed to explain the electric conduction in the system. It was found that the hopping conduction is the predominant conduction mechanism. For samples with compositional parameter x=0.0 and 0.8, the band conduction mechanism shares in electric conduction beside the hopping process.  相似文献   

6.
The microwave characteristics of Co2+ and Ti4+ ions substituted, BaCo x Ti x Fe(12?2x)O19 (x = 0.1, 0.3, 0.5, 0.7, 0.9) ferrite have been studied as a function of thickness, frequency and substitution. The results depict reflection loss of ? 31.94 dB at 10.47 GHz in x = 0.9. The highest static electrical current is observed at lower substitution. The model accompanying microwave absorption is used to evaluate microwave absorption characteristics. The electromagnetic and static electrical characteristics are improved with the substitution of Co2+ and Ti4+ ions. The compositions for possible electromagnetic applications are also explored.  相似文献   

7.
The effect of Fe substitution for Co on direct current (DC) electrical and thermal conductivity and thermopower of Ca3(Co1−xFex)4O9 (x = 0, 0.05, 0.08), prepared by a sol–gel process, was investigated in the temperature range from 380 down to 5K. The results indicate that the substitution of Fe for Co results in an increase in thermopower and DC electrical resistivity and substantial (14.9–20.4% at 300K) decrease in lattice thermal conductivity. Experiments also indicated that the temperature dependence of electrical resistivity ρ for heavily substituted compounds Ca3(Co1−xFex)4O9 (x = 0.08) obeyed the relation lnρT−1/3 at low temperatures, T < ~55K, in agreement with Mott’s two-dimensional (2D) variable range hopping model. The enhancement of thermopower and electrical resistivity was mainly ascribed to a decrease in hole carrier concentration caused by Fe substitution, while the decrease of thermal conductivity can be explained as phonon scattering caused by the impurity. The thermoelectric performance of Ca3Co4O9 was not improved in the temperature range investigated by Fe substitution largely due to great increase in electrical resistivity after Fe substitution.  相似文献   

8.
P S Jain  V S Darshane 《Pramana》1983,20(1):7-17
Structural, electrical and Mössbauer studies were carried out for the system Zn1?xCo x Fe MnO4. It is observed that forx?0.6, the ionic configuration of the system is Zn 1?x 2+ Mn x 2+ [Co x 3+ Mn 1?x 3+ Fe3+]O 4 2? and forx?0.8 Fe3+ ions occupy tetrahedral site also. On the basis of electrical and Mössbauer studies a probable valence distribution of CoMnFeO4 has been suggested. All the compounds showed positive values of thermoelectric coefficient and electrical conduction takes place by a hopping mechanism. Activation energy and thermoelectric coefficient values decreased with decrease in concentration of Zn2+ ions. The compounds possess low mobility values varying between 10?7 and 10?9 cm2/V sec.  相似文献   

9.
Polycrystalline La2−xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x=0.1-0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centres in the unit cell leading to increase in critical current density and flux pinning.  相似文献   

10.
The magnetic properties and electrical conductivity of La1?x SrxCo1?x/2Nb x/2O3 solid solutions with trivalent cobalt ions are studied. These solid solutions are found to be spin glasses with T f ~ 25 K. The ferromagnetic component is most pronounced in the composition with x = 0.15. The electrical conductivity decreases with increasing strontium content. The results obtained are interpreted within a model according to which cobalt ions located in the vicinity of strontium ions reside in an intermediate-spin state and the Co3+-O-Co3+ super-exchange interaction is ferromagnetic because of the local dynamic orbital correlations.  相似文献   

11.
We have prepared polycrystalline Ca3−xEuxCo4O9+δ (x=0, 0.15, 0.3 and 0.45) samples using a sol-gel process followed by SPS sintering and investigated the Eu substitution effects on their high-temperature thermoelectric properties. With the Eu substitution, both the electrical resistivity and thermopower increase monotonously. This could be attributed to the decrease of hole concentrations by substitution of trivalent Eu3+ for divalent Ca2+. The Eu substituted samples (x=0.15, x=0.3) have lower thermal conductivity than Ca3Co4O9+δ due to their lower electronic and lattice thermal conductivity. The dimensionless figure of merit ZT reaches 0.3 at 1000 K for the sample of Ca2.7Eu0.3Co4O9+δ.  相似文献   

12.
Cobalt-nickel-manganese pyrophosphate nanostructures with formula CoxNi1-xMnP2O7 were prepared via the hydrothermal method at 150 °C, with further calcinations at 500 °C. A structural analysis of CoxNi1-xMnP2O7 samples was carried out using X-ray diffraction (XRD). The effect of Co substitution on the structural, electrical, and electrochemical properties of CoxNi1-xMnP2O7 is reported. The electrochemical results show that the specific capacity increases from 59 to 205 mAh/g with increasing Co content. This study demonstrates the Co substitution effect on the mixed electrical conductivity. The temperature dependence of the dc electrical conductivity, for both pure and Co2+-doped samples, obeys the Arrhenius law. The frequency dependence of ac conductivity for the materials exhibited a Jonscher’s universal power law. The plots of pre-exponent (n) versus temperature suggested that the conduction mechanism can be described using correlated barrier hopping model. The improved electrical conductivity and electrochemical proprieties of CoxNi1-xMnP2O7 nanomaterials could be ascribed to the synergistic effect of nickel and cobalt ions. The best results have been obtained for the composition x(Co) = 0.75, where the electrical conductivity is maximum, and the Co0.75Ni0.25MnP2O7 demonstrates the highest specific capacity, implying their promising potential applications in the energy storage.  相似文献   

13.
Manoranjan Kar  S Ravi 《Pramana》2002,58(5-6):1009-1012
Electron-doped (Ba1−x La x )MnO3 compounds were prepared for x=0−0.5. Measurements of X-ray diffraction (XRD) at room temperature and temperature variation of dc electrical resistivity down to 20 K were carried out. Samples with x=0.2–0.5 exhibit metal-insulator (M-I) transition. The maximum M-I transition temperature (T c) of 289 K was observed for 30% of La doping (x=0.3). XRD patterns of these samples (x=0.2−0.5) were analyzed using Rietveld refinement. These samples are found to be mostly in single-phase form with orthorhombic symmetry (space group Pbnm). We have found strong correlation between Mn-O-Mn bond angles and T c of M-I transition. The resistivity data below T c could be fitted to the expression ρ=ρ 1+ρ 2 T 2 and this shows that double exchange interaction plays a major role even in Mn4+-rich compound. Above T c the resistivity data were fitted to variable range hopping and small polaron models.  相似文献   

14.
M-type strontium ferrites substituted by La3+-Co2+(Sr1−xLaxFe12−xCoxO19) were prepared by ceramic process. Effects of the substituted amount of La3+ and Co2+ on structure and magnetic properties of Sr1−xLaxFe12−xCoxO19 compounds have systematically been investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and magnetic disaccommodation. In the measurement range from 80 to 500 K, the magnetic disaccommodation is represented by means of isochronal curves. It is well known that magnetic disaccommodation cannot be obviously found in the M-type of pure strontium ferrites. However, three peaks were observed in Sr1−xLaxFe12−xCoxO19, and this behavior is explained in terms of the presence of Fe2+ cation and to the site occupation by the magnetic Co2+ ionic within the hexagonal structure.  相似文献   

15.
Different mixed iron-cobalt molybdates Co1−xFexMoO4 (0 < x ≤ 1) were prepared by means of a ceramic process. The influence of the isostructural substitution of Co2+ by Fe2+ and Fe3+ on the electrical conductivity of CoMoO4 was studied in the temperature range (50–600°C). The results show that the iron substitution increases the electrical conductivity and changes the conduction mechanism of CoMoO4. From a band conduction mechanism with an activation energy higher than 0.8 eV the conduction mode transforms into a hopping mechanism between the Fe2+ and Fe3+ ions in the octahedrally coordinated divalent cation sublattice. The activation energy is lower (0.4 eV) and does not alter around the polymorphic transition temperature. Owing to careful oxidations of the samples into cation deficient phases it was shown that the conductivity is proportional to the [Fe2+]/[Fe3+] ratio. These mild oxidations confirm the hopping mechanism. The presence of Co2+/Co3+ pairs has a minor contribution to the overall conductivity process. Paper presented at the 2nd Euroconference, Funchal, Madeira, Portugal, 10 – 16 Sept. 1995  相似文献   

16.
The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca10−3xFe2xCox(PO4)6(OH)2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe2O4. Electron spin resonance measurements indicate that the Co2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe3+/Co2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe3+ and the other for the B-site Fe3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe2O4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe3+ and Co2+ which being used to form the CoO and Fe2O3 impurity phase seen in the XRD patterns.  相似文献   

17.
Characterization and electrical properties of vanadium-copper-phosphate glasses of compositions xV2O5-(40−x)CuO-60P2O5 have been reported. X-ray diffraction (XRD) confirms the amorphous nature of these glasses. It was observed that, the density (d) decreases gradually while the molar volume (Vm) increases with the increase of the vanadium oxide content in such glasses. This may be due to the effect of the polarizing power strength, PPS, which is a measure of ratio of the cation valance to its diameter. The dc conductivity increases while the activation energy decreases with the increase of the V2O5 content. The dc conductivity in the present glasses is electronic and depends strongly upon the average distance, R, between the vanadium ions. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron.  相似文献   

18.
The perovskite solid solutions of the type La2xSr2−2xCo2xRu2−2xO6 with 0.25≤x≤0.75 have been investigated for their structural, magnetic and transport properties. All the compounds crystallize in double perovskite structure. The magnetization measurements indicate a complex magnetic ground state with strong competition between ferromagnetic and antiferromagnetic interactions. Resistivity of the compounds is in confirmation with hopping conduction behaviour though differences are noted especially for x=0.4 and 0.6. Most importantly, low field (50 Oe) magnetization measurements display negative magnetization during the zero field cooled cycle. X-ray photoelectron spectroscopy measurements indicate the presence of Co2+/Co3+ and Ru4+/Ru5+ redox couples in all compositions except x=0.5. Presence of magnetic ions like Ru4+ and Co3+ gives rise to additional ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the observed negative magnetization.  相似文献   

19.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

20.
The thermal properties and their relationship to the charge transport properties of the La2?xSrxCu0.94Ti0.06O4 solid solution series have been investigated by means of electric resistivity and thermopower measurements. The different changes of the broad peak in ST curves for Sr-doped samples were observed, which may result from the itinerant hole carriers. The transport mechanism of La2?xSrxCu0.94Ti0.06O4 is mainly dominated by the small-polaron hopping due to the discrepancy in the activation energy derived from the resistivity and the thermoelectric power. The small polarons are not originated from the magnetic coupling between magnetic ions and hole spins, but from the coupling between the phonon with a breathing mode and the hole carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号