共查询到20条相似文献,搜索用时 15 毫秒
1.
Gitanjali Pagare Vipul Srivastava Sankar P. Sanyal M. Rajagopalan 《Physica B: Condensed Matter》2011,406(3):449-455
The ground state electronic structure and thermal properties of B2-type intermetallic compounds AlRE (RE: Pm, Sm, Eu, Tb, Gd and Dy) have been studied using a self-consistent tight-binding linear muffin-tin orbital (TB-LMTO) method at ambient as well as at high pressure. These compounds show metallic behavior under ambient condition. The band structure, total energy, density of states and ground state properties like lattice parameter, bulk modulus are calculated in the present work. The Debye-Grüneisen model is used to calculate the Debye temperature and the Grüneisen constant. The calculated results are in good agreement with the reported experimental and other theoretical results. The variation in the Debye temperature with pressure has also been reported. We present a detailed analysis of the role of f electrons of RE in the AlRE system. 相似文献
2.
Using pseudo-potential plane-wave method based on the density functional theory in conjunction with the generalized gradient approximation, structural parameters, electronic structures, elastic stiffness and thermal properties of M2PC, with M=V, Nb, Ta, were studied. The optimized zero pressure geometrical parameters are in good agreement with the available results. Pressure effect, up to 20 GPa, on the lattice parameters was investigated. Electronic properties are studied throughout the calculation of densities of states and band structures. The elastic constants and their pressure dependence were predicted using the static finite strain technique. We performed numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio and average sound velocity for ideal polycrystalline M2PC aggregates in framework of the Voigt-Reuss-Hill approximation. We estimated the Debye temperature and the theoretical minimum thermal conductivity of M2PC. 相似文献
3.
The structural, phase transition, elastic, lattice dynamic and thermodynamic properties of rare-earth compounds PrP and PrAs with NaCl (B1), CsCl (B2), ZB (B3), WC (Bh) and CuAu (L10) structures are investigated using the first principles calculations within the generalized gradient approximation (GGA). For the total-energy calculation, we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab-initio Simulation Package (VASP). Specifically, some basic physical parameters, e.g. lattice constants, bulk modulus, elastic constants, shear modulus, Young's modulus and Poison's ratio, are predicted. The obtained equilibrium structure parameters are in excellent agreement with the experimental and theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are calculated in wide pressure and temperature ranges. The phonon dispersion curves and corresponding one-phonon density of states (DOS) for both compounds are also computed in the NaCl (B1) structure. 相似文献
4.
《Current Applied Physics》2015,15(11):1324-1331
We have theoretically investigated the structural, elastic, electronic and magnetic properties of Be0.75Co0.25Y (YS, Se and Te) alloys, in their zinc-blend phase. This study is carried out by using the full-potential augmented plane wave plus local orbitals method within the density functional theory. Foe computing the exchange-correlation potential, the Wu and Cohen generalized gradient approximation is employed to calculate structural and elastic properties whereas the modified Becke and Johnson potential local density approximation is utilized to examine electronic and magnetic properties. By minimizing the total energy in paramagnetic (PM) and ferromagnetic (FM) phases, it is found the studied compounds are stable in FM structure. The mechanical behavior of the studied compounds is reported with the calculation of shear modulus, Young's modulus, and Poisson's ratio provides. Such mechanical aspects might be useful for the experimentalists to study the mechanical properties upon alloying BeY compounds with Co. We also compute electronic structures, density of states (total and partial), pd-exchange splitting and magnetic moments. Moreover, bond nature is studied by estimating the spin polarized charge densities of Be0.75Co0.25Y (YS, Se and Te). 相似文献
5.
The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants. 相似文献
6.
Saadi Berri Djamel Maouche Fares Zerarga Youcef Medkour 《Physica B: Condensed Matter》2012,407(17):3328-3334
We preformed first-principle calculations for the structural, electronic, elastic and magnetic properties of Cu2GdIn, Ag2GdIn and Au2GdIn using the full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation by Wu and Cohen (GGA-WC), GGA+U, the local spin density approximation (LSDA) and LSDA+U. The lattice parameters, the bulk modulus and its pressure derivative and the elastic constants were determined. Also, we present the band structures and the densities of states. The electronic structures of the ferromagnetic configuration for Heusler compounds (X2GdIn) have a metallic character. The magnetic moments were mostly contributed by the rare-earth Gd 4f ion. 相似文献
7.
The electronic structure and related physical properties of crystalline ammonium sulfate, (NH4)2SO4, have been studied using the first principles code CRYSTAL06 at the B3LYP level of theory. The title compound has been found to possess one stable and three metastable configurations, all within the polar space group Pna21 (no. 33). Two of the metastable polymorphs are newly predicted and have not yet been observed experimentally. The different configurations show considerably varying magnitudes of the spontaneous polarization Ps. All coefficients of the elastic stiffness tensor, ckl, and elasto-electrical tensor, eki have been calculated for the first time and have been found to agree satisfactorily with experimental data, as far as available. 相似文献
8.
A. Bouhemadou K. Haddadi R. Khenata D. Rached S. Bin-Omran 《Physica B: Condensed Matter》2012,407(12):2295-2300
A density functional-based method is used to investigate the structural, elastic and thermodynamic properties of the cubic spinel semiconductors MgIn2S4 and CdIn2S4 at different pressures and temperatures. Computed ground structural parameters are in good agreement with the available experimental data. Single-crystal elastic parameters are calculated for pressure up to 10 GPa and temperature up to 1200 K. The obtained elastic constants values satisfy the requirement of mechanical stability, indicating that MgIn2S4 and CdIn2S4 compounds could be stable in the investigated pressure range. Isotropic elastic parameters for ideal polycrystalline MgIn2S4 and CdIn2S4 aggregates are computed in the framework of the Voigt–Reuss–Hill approximation. Pressure and thermal effects on some macroscopic properties such as lattice constant, volume expansion coefficient and heat capacities are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. 相似文献
9.
The structural, electronic, elastic and thermal properties of the cubic AB type (A=Tc, B=Ti, V, Nb and Ta) technetium intermetallic compounds have been studied using the full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) and local density approximation (LDA) used for the exchange-correlation potential. The calculated lattice parameters agree well with the experimental results. The calculated electronic properties reveal that these compounds are metallic in nature with partial ionic bonding. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh's rule and Cauchy's pressure revealing ductile in nature of all the compounds. Bonding nature is discussed using Fermi surface, band structure and charge density difference plots. 相似文献
10.
We report ab-initio calculations of the structural, electronic, magnetic and optical properties of the alloy Cd1-xMnxTe as a function of the Mn concentration ‘x’. Ab-initio calculations are based on the density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice constants of the Cd1-xMnxTe alloys exhibit Vegard's law downward bowing parameter. For the minority spin channel the Fermi level shifts toward higher energy with the value of ‘x’ in Cd1-xMnxTe. The spin-exchange splitting energy Δx(d) increases with increasing ‘x’ in Cd1-xMnxTe and the values of p-d exchange splitting energy Δx(pd) of Cd1-xMnxTe show that the effective potential for the minority spin is more attractive than that for the majority spin. The values of exchange constants N0α and N0β obtained for Cd1-xMnxTe are in agreement with the reported data. The magnetic moment per Mn atom reduces from its free space charge value of 5μB to around 4μB due to p-d hybridization and this results into an appearance of small local magnetic moments on the non-magnetic Cd and Te sites. The absorption threshold shifts toward higher energy and the static refractive index decreases with the increasing value of ‘x’ in Cd1-xMnxTe. 相似文献
11.
A. Bouhemadou 《哲学杂志》2013,93(12):1623-1638
The structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf) were studied by means of a pseudo-potential plane-wave method based on the density functional theory within both the local density approximation and the generalised gradient approximation. The optimised zero-pressure geometrical parameters, i.e. the two unit cell lengths (a, c) and the internal coordinate (z), were in good agreement with available experimental and theoretical data. The effect of high pressure, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than along c-axis. The anisotropic independent elastic constants were calculated using the static finite strain technique. Numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature for ideal polycrystalline M2SbP aggregates were performed in the framework of the Voigt–Reuss–Hill approximation. The calculated band structures show that all studied materials are electrical conductors. Analysis of the atomic site projected densities showed that the bonding is of covalent–ionic nature with the presence of metallic character. The density of states at the Fermi level is dictated by the transition metal d–d bands; the Sb element has little effect. Thermal effects on some macroscopic properties of M2SbP were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the volume expansion coefficient, heat capacity and Debye temperature with pressure and temperature in the ranges 0–50 GPa and 0–2000 K were obtained successfully. 相似文献
12.
Yifang Ouyang Fenglian LiuHongmei Chen Xiaoma TaoYong Du Yuehui He 《Physica B: Condensed Matter》2011,406(19):3681-3686
The lattice constants, enthalpies of formation, elastic constants and electronic structures of Al-Sr intermetallics have been calculated by first-principles method within generalized gradient approximation. The calculated lattice constants and enthalpies of formation are in good agreement with experimental and other theoretical results. The polycrystalline bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are also estimated from the calculated single crystalline elastic constants. The total and partial electronic densities of state for the intermetallics were obtained, and the results indicated that Al2Sr-oI is more stable than Al2Sr-cF. Finally, longitudinal, transverse and average sound velocities and Debye temperature are estimated. 相似文献
13.
Structural, electronic, elastic and thermal properties of Mg2Si 总被引:1,自引:0,他引:1
Benhai Yu Qingbin Tang Chunlei Wang Deheng Shi 《Journal of Physics and Chemistry of Solids》2010,71(5):758-2076
First-principles calculations of the lattice parameter, electron density maps, density of states and elastic constants of Mg2Si are reported. The lattice parameter is found to differ by less than 0.8% from the experimental data. Calculations of density of states and electron density maps are also performed to describe the orbital mixing and the nature of chemical bonding. Our results indicate that the bonding interactions in the Mg2Si crystal are more covalent than ionic. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the plane-wave pseudopotential method, is applied to study the elastic, thermal and vibrational effects. The variations of bulk modulus, Grüneisen parameter, Debye temperature, heat capacity Cv, Cp and entropy with pressure P up to 7 GPa in the temperature interval 0-1300 K have been systemically investigated. Significant differences in properties are observed at high pressure and high temperature. When T<1300 K, the calculated entropy and heat capacity agree reasonably with available experimental data. Therefore, the present results indicate that the combination of first-principles and quasi-harmonic Debye model is an efficient approach to simulate the behavior of Mg2Si. 相似文献
14.
H. Bouafia B. Sahli S. Hiadsi B. Abidri D. Rached B. Amrani 《Physica B: Condensed Matter》2012,407(12):2154-2159
The structural, elastic, electronic, and thermodynamic properties of the cubic NaAlO3-perovskite are calculated using the full potential linearized augmented plane wave with local orbital (FP-LAPW)+lo. The exchange-correlation energy, is treated in generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) parameterization. The calculated equilibrium parameter is in good agreement with other works. The bulk modulus, elastic constants and their related parameters, such as Young modulus, shear modulus, and Poisson ratio were predicted. The electronic band structure of this compound has been calculated using the Angel-Vosko (EV) generalized gradient approximation (GGA) for the exchange correlation potential. We deduced that NaAlO3-perovskite exhibit a wide-gap which it is an indirect from R to Γ point. The analysis of the density of states (DOS) curves shows ionic and covalent character bond for Al–O and Na–O respectively. 相似文献
15.
The structural, electronic, elastic, mechanical and thermal properties of Ti3Au, Ti3Pt and Ti3Ir intermetallic compounds crystallizing in A15 structure have been studied using density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Elastic properties such as Young's modulus (E), rigidity modulus (G), bulk modulus (B), Poisson's ratio (σ) and elastic anisotropic factor (A) have been calculated. From the present study it is noted that Ti3Ir is the hardest compound among the three materials studied due to its larger bulk modulus. Also, it is more ductile in nature. 相似文献
16.
The structural, electronic, mechanical and superconducting properties of tungsten carbide (WC) and tungsten nitride (WN) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties, such as equilibrium lattice constant and cell volume, are in good agreement with the available experimental data. A pressure induced structural phase transition is observed in both tungsten carbide and nitride, from a tungsten carbide phase (WC) to a zinc blende phase (ZB), and from a zinc blende phase (ZB) to a wurtzite phase (WZ). The electronic structure reveals that these materials are metallic at ambient conditions. The calculated elastic constants obey the Born-Huang criteria, suggesting that they are mechanically stable at normal and high pressure. Also, the superconducting transition temperature is estimated for the WC and WN in stable structures at atmospheric pressure. 相似文献
17.
Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen’s method has been used to predict the Vicker’s hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase. 相似文献
18.
We have studied some structural, thermodynamic, elastic, and electronic properties of pyrite-type SnO2 polymorph by performing ab initio calculations within the LDA approximation. The basic physical properties, in particular lattice constant, bulk modulus, second-order elastic constants (Cij), and the electronic structure, are calculated, and compared with the available experimental data. In order to gain some further information on the mechanical properties, we have also calculated the Young's modulus, Poison's ratio (ν), anisotropy factor (A), sound velocities, and Debye temperature for the same compound. 相似文献
19.
First-principles calculations were performed to study on alloying stability, electronic structure, and mechanical properties of Al-based intermetallic compounds (AlCu3, AlCu2Zr, and AlZr3). The calculated results show that the lattice parameters obtained after full relaxation of crystalline cells are consistent with experimental data. The calculation of cohesive energies indicated that the structure stability of these Al-based intermetallics will become higher with increasing Zr element in crystal. The calculations of formation energies showed that AlCu2Zr has the strongest alloying ability, followed by AlZr3 and finally the AlCu3. The further analysis find out that single-crystal elastic constants at zero-pressure satisfy the requirement of mechanical stability for cubic crystals. The calculations on the ratio of bulk modulus to shear modulus reveal that AlCu2Zr can exhibit a good ductility, followed by AlCu3, whereas AlZr3 can have a poor ductility; however, for stiffness, these intermetallics show a converse order. The calculations on Poisson's ratio show that AlCu3 is much more anisotropic than the other two intermetallics. In addition, calculations on densities of states indicate that the valence bonds of these intermetallics are attributed to the valence electrons of Cu 3d states for AlCu3, Cu 3d, and Zr 4d states for AlCu2Zr, and Al 3s, Zr 5s and 4d states for AlZr3, respectively; in particular, the electronic structure of the AlZr3 shows the strongest hybridization, leading to the worst ductility. 相似文献
20.
Yingchun Ding 《Physica B: Condensed Matter》2012,407(12):2190-2200
The structural stability, mechanical properties and thermodynamic parameters such as Debye temperature, minimum thermal conductivities of orthorhombic-A2N2O (A=C, Si and Ge) are calculated by first principles calculations based on density functional theory. The calculated lattice parameters, elastic constants of Si2N2O and Ge2N2O using PBEsol function are consisted with the experimental data and other calculated values. The full set elastic constants of the orthorhombic-A2N2O (A=C, Si and Ge) are calculated by stress–strain method. The mechanical moduli (bulk modulus, shear modulus and Young's modulus) are evaluated by the Voigt–Reuss–Hill approach. The orthorhombic-C2N2O exhibits larger mechanical moduli than the other two structures. The hardness of orthorhombic-A2N2O (A=C, Si and Ge) is evaluated according to the intrinsic hardness calculation theory of covalent crystal relying on Mulliken overlap population. The results indicate that the orthorhombic-C2N2O is a super hard material. Furthermore, the mechanical anisotropy, Debye temperature and minimum thermal conductivity of the orthorhombic-A2N2O (A=C, Si and Ge) have been estimated by empirical methods. The orthorhombic-Ge2N2O shows the lowest thermal conductivity, which may have useful applications as gas turbine engines and diesel engines. 相似文献