共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohd Muzafa Jumidali Kamal Mahir Sulieman Md Roslan Hashim 《Applied Surface Science》2011,257(11):4890-4895
Zinc oxide/zinc germanium oxide (ZnO/Zn2GeO4) porous-like thin film and wires has been fabricated by simple thermal evaporation method at temperature about 1120 °C for 2.5 h. The structural and optical properties of the porous-like-thin film and wires have been investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Metal semiconductor metal (MSM) photodetector structure was used to evaluate the electrical characteristics by using current-voltage (I-V) measurements. Room temperature photoluminescence spectrum of the sample shows one prominent ultraviolet peak at 378 nm and a shoulder at 370 nm. In addition, broad visible blue emission peak at wavelength 480 nm and green emission peak at 500 nm are also observed. Strong photoelectric properties of the MSM in the UV demonstrated that the porous-like-thin film and wires contribute to its photosensitivity and therefore making ZnO/Zn2GeO4 wires potential photodetector in the shorter wavelength applications. 相似文献
2.
C. YangC.Z. Liu C.M. WangW.G. Zhang J.S. Jiang 《Journal of magnetism and magnetic materials》2012,324(8):1483-1487
Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, Bi0.8Ca0.2−xBaxFeO3 (x=0-0.20), were prepared by a sol-gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07-0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the TN of the nanoparticles was obviously increased. All the Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles presented the high ratio of Mr/M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. 相似文献
3.
Polycrystalline ceramic samples of Bi2Sn2−xTixO7 (x=0.00, 0.2, 0.4, 0.6 and 0.8) have been synthesized by standard high temperature solid state reaction method. The effect of homovalent cation (titanium) substitution on the Sn-site on the structural and electrical properties of the pure Bi2Sn2O7 ceramic have been studied by X-ray diffraction followed by SEM, dielectric and dc conductivity studies. The structural analysis indicates that the increase of titanium contents do not lead to any secondary phase. The frequency and temperature dependent dielectric studies have been carried out. It is found that the Ti doping reduces the material particle size. The size of the particles are strongly influenced by the addition of titanium to the system. The substitution of Ti for Sn ions affected the degree of disorder and modified the dielectric properties leading to more resistive ceramic compounds. The activation energies of all the compounds were calculated using the relation σ=σ0exp(−Ea/kT). 相似文献
4.
The Sm3+-doped CaWO4 nanoparticles were synthesized by hydrothermal method. The room temperature photoluminescence (PL) spectra of Sm3+-doped CaWO4 nanoparticles doped with different Sm3+ concentrations under 405 nm excitation have been investigated. The PL spectra showed four strong emission peaks at 460, 571, 609, and 653 nm. The first emission peak at 460 nm could be due to a structural defect of the lattice, an oxygen-deficient WO3 complex. The other three emissions at 571, 609, and 653 nm were due to the f-f forbidden transitions of the 4f electrons of Sm3+, corresponding to 4G5/2→6H5/2 (571 nm), 6H7/2 (609 nm), and 6H9/2 (653 nm), respectively. In addition, the optimum Sm3+ concentration in CaWO4 nanoparticles for optical emission was determined to be 1.0%. The Sm3+4G5/2→6H7/2 (609 nm) emission intensity of Sm3+-doped CaWO4 nanoparticles significantly increased with the increase of Sm3+ concentration, and showed a maximum when Sm3+ doping content was 1.0%. If Sm3+ concentration continued to increase, namely more than 1.0%, the Sm3+4G5/2→6H7/2 emission intensity would decrease. The present materials might be a promising phosphor for white-light LED applications. 相似文献
5.
Sol-gel derived Mg doped tin oxide (Sn1−xMgxO2) nanocrystals were synthesized with x ranging between 0.5 and 7 at. %. Characteristic single phase tetragonal structure of pure and doped samples was obtained and doping saturation was inferred by X-ray diffraction analysis. Structural, morphological and phase informations were obtained by high resolution transmission electron microscope, field emission scanning electron microscope and X-ray photoelectron spectroscopy respectively whereas bonding information was obtained from Fourier transformed infrared spectroscopy. Measurement of different electrical parameters with frequency (200 Hz-105 Hz) has been carried out at room temperature. Ultrahigh dielectric constant and metallic AC conductivity were observed for undoped tin oxide and the profiles reflected highly sensitive changes in the atomic and interfacial polarizability generated by doping concentrations. Relaxation spectra of tangent loss of any sample did not show any loss peak within the frequency range. Both the grain and grain boundary contributions are observed to increase as the doping concentration increased. Results of first principle calculation based on density functional theory indicated effective Fermi level (EF) suppression due to Mg doping which is responsible for the experimentally observed conductivity variation. AC conductivity was found to depend strongly on the doping concentration and the defect chemistry of the compound. Mg doped SnO2 may find applications as a low loss dielectric and high density energy storage material. 相似文献
6.
The uniform BaMoO4 and BaWO4 nanoparticles (NPs) have been successfully synthesized by solution route – the direct precipitation of Ba(NO3)2 and Na2MO4 (M = Mo and W) in ethylene glycol under 24 h stirring. The XRD patterns and SEM images proved that the products were tetragonal structured BaMoO4 and BaWO4 with uniform round nanoparticles. Shape, average particle size and particle-size distribution of products were analyzed by TEM – showing the round nanoparticles with the average size of 31.52 ± 4.65 nm for BaMoO4, and 59.77 ± 9.61 nm for BaWO4. The room temperature photoluminescence (PL) indicated that the products have strong blue emission centered at 441 nm – excited with 280 nm wavelength for BaMoO4 NPs, and strong violet emission centered 378 nm – excited with 344 nm wavelength for BaWO4 NPs. These PL behaviors attributed the existence of intrinsic transitions in the [MO4]2- (M = Mo and W) tetrahedrons of their crystal lattices. 相似文献
7.
Dong Xu Biao Wang Yuanhua Lin Lei Jiao Hongming Yuan Guoping Zhao Xiaonong Cheng 《Physica B: Condensed Matter》2012,407(13):2385-2389
In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz–107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients. 相似文献
8.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi. 相似文献
9.
T.Y. Ko 《Journal of luminescence》2009,129(12):1747-6635
In this report, methods of solvothermal synthesis of Sb2Se3 nanorods from a single-source precursor Sb[Se2P(O iPr)2]3 were demonstrated. The synthesized Sb2Se3 nanorods were expected to have new optical and electrical properties. With the electron beam (E-beam) lithography and focus ion beam (FIB) techniques, we achieved immobilization and positioning of a single Sb2Se3 nanorod on a patterned template. By using the confocal Raman microscope and two-point-contact electrical measurement methods, we obtained optical and electrical characteristics from a single Sb2Se3 nanorod. 相似文献
10.
Byeol HanSeung-Won Lee Kwangchol ParkChong-Ook Park Sa-Kyun RhaWon-Jun Lee 《Current Applied Physics》2012,12(2):434-436
We produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is −6.4 V, which agrees well with the experimental observation (−6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer. 相似文献
11.
Muhammad Javed Iqbal Muhammad Naeem Ashiq 《Journal of magnetism and magnetic materials》2010,322(13):1720-5126
Calcium substituted strontium hexaferrite CaxSr1−xFe12O19 (x=0.0−0.6) nanoparticles are synthesized by chemical co-precipitation method. The synthesized samples are characterized by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy, Transmission Electron Microscopy, DC electrical resistivity and dielectric measurements. FTIR data of uncalcined sample shows that nitrate ions are present which disappeared on calcination at 920 °C. The XRD data shows that a single hexagonal magnetoplumbite phase is formed in samples in which the calcium content, x, is ≤0.20. However, a nonmagnetic phase (α-Fe2O3) in addition to the hexagonal phase is also present in samples with x>0.20. The average crystallite size is found between 17 and 29 nm. The DC electrical resistivity increases with increase of calcium content up to level of x=0.2 but decreased on further addition of calcium. The enhanced resistivity of the calcium doped material has potential applications in microwave devices. The variations of dielectric constant and dielectric loss angle are explained on the basis of Maxwell-Wagner and Koops models. 相似文献
12.
Nickel-doped anatase TiO2 nanoparticles have been prepared by sol-gel method. The X-ray powder diffraction study reveals that all the prepared samples have pure anatase phase tetragonal system. The average crystallite size of the prepared sample is 14 nm, when found through transmission electron microscope. A strong frequency dependence of both dielectric constant (?′) and dielectric loss (tan δ) were observed for various dopant levels at room temperature in the frequency range of 42 Hz to 5 MHz. At low frequency, the piling up of mobile charge carriers at the grain boundary produces interfacial polarization giving rise to high dielectric constant. The asymmetric shape of frequency dependence of the dielectric loss for the primary relaxation process is observed for each concentration. From the ac conductivity studies, the reduction in conductivity may arise due to the decreasing particle with the increase in Ni-dopant level. 相似文献
13.
利用传统的固相反应工艺,在不同的烧结温度下制备了一系列的CaCu3Ti4O12陶瓷样品,考察了其微观结构以及介电和复阻抗方面的电学性质.研究发现这些样品在微观结构方面可分为三种类型,高介电性与微观结构有着密切的关联性.室温下,样品的低频介电常数随陶瓷晶粒尺寸的增大而提高.随着测试温度的升高,不同微观结构类型的样品呈现出不同的电学性质的变化,但其中也存在着一些相同的特征.高温下,介电频谱呈现出一个低频介电响应和两个类Debye型弛豫色散,复阻抗谱呈现出三个Cole-Cole半圆弧.将实验上观测到的电学性质的起因归于陶瓷多晶微结构中的晶畴、晶界和晶粒内的缺陷.
关键词:
3Ti4O12')" href="#">CaCu3Ti4O12
微观结构
电学性质 相似文献
14.
Bismuth ferrite (BFO) and La-substituted BFO with composition Bi1−xLaxFeO3 (x=0.05, 0.1 and 0.15) (BLFOx=0.05-0.15) ceramics were prepared using the solid state reaction route. A structural phase transition from rhombohedral phase to triclinic phase was observed for BLFOx=0.05-0.15 ceramics. Modulus spectroscopy reveals the deviation of dielectric behavior from ideal Debye characteristics and the dependence of conductivity on ion hopping in BFO and BLFOx=0.05-0.15 ceramics. The conductivity of the BFO ceramics decreases for La content of 5 mol%, followed by a subsequent increase with 10 and 15 mol% of lanthanum doping. The typical values of the activation energies at high temperature reveal the contribution of short range movement of doubly ionized oxygen vacancies to the conduction process in BFO and BLFOx=0.05 ceramics. Both short range and long range motion of oxygen vacancies are responsible for large conductivity in BLFOx=0.1 and 0.15 ceramics. 相似文献
15.
制备了Bi7Ti4NbO21,Bi4Ti3O12及Nb掺杂Bi4Ti3O12(Nb-Bi4Ti3O12)层状结构铁电陶瓷材料.结合Nb-Bi 4Ti3O12的介电温谱和 退极化实验结果,研究了Bi7Ti4NbO21的晶体结构 对其介电、压电性能的影响 .高分辨透射电镜结果表明,在Bi7Ti4NbO21中, 沿着c轴方向,(Bi2Ti3O10)2-和(BiTiNbO7)2-两个类钙钛矿层分别 与(Bi2O2)2+层叠加堆积而成.这种晶体结构决定了Bi7Ti4NbO21的 介电温谱在668℃和845℃出现介 电双峰.结合极化样品的退化实验分析,说明材料在这两个温度附近发生了铁电—铁电相变 、铁电—顺电相变,分别是(Bi2Ti3O10)2-< /sup>和(BiTiNbO7)2-层状 结构发生微观结构相变的结果.在退极化过程中,由于受热时钙钛矿层内空位引起的缺陷偶 极子的定向排列受到破坏,引起材料部分退极化,表现为300℃热处理后Bi7Ti 4NbO 21的压电活性降低了10%,显示了室温下材料的压电性能来源于自发极化的固有电 偶极子和缺陷偶极子的共同贡献. 相似文献
16.
Zhihang Peng Dongxu Yan Qiang Chen Deqiong Xin Dan Liu Dingquan Xiao Jianguo Zhu 《Current Applied Physics》2014,14(12):1861-1866
Aurivillius phase Bi3Ti1−xTaxNb1−xWxO12 high temperature piezoceramics were prepared by a conventional solid state reaction method. The crystal structure, dielectric, electrical conduction and piezoelectric properties were systematically studied. Pure or modified Bi3TiNbO9 ceramics revealed the presence of only two-layered Aurivillius phase, indicating that Ta/W doping entered into the B-site of pseudo-perovskite structure and formed solid solutions. The Curie temperature had a strong reliance on the structural distortion. Furthermore, Ta/W dopants act as a donor doping, decrease the number of oxygen vacancies and facilitate the domain wall motion. As a result, Ta/W modifications significantly increase the DC resistivity and piezoelectric properties. Bi3Ti0.98Ta0.02Nb0.98W0.02O12 ceramics possess the optimum d33 value (∼12.5 pC/N) together with a high TC point (∼893 °C). Moreover, the resonance–antiresonance spectra demonstrate that the Ta/W-BTN ceramics are indeed piezoelectric in nature at 600 °C. The d33 value of BTTNW-2 ceramic remains ∼12.2 pC/N after annealing at 700 °C. These factors suggest that the BTTNW-based ceramic is a promising candidate for ultra-high temperature sensor applications. 相似文献
17.
18.
Ravindar Tadi Yong-Il KimDebasish Sarkar CheolGi KimKwon-Sang Ryu 《Journal of magnetism and magnetic materials》2011,323(5):564-568
BaTiO3+MgFe2O4 material system was synthesized by hybrid chemical process using chlorides and nitrates of barium, titanium, iron, and magnesium. Magnetic properties of the composite samples measured as a function of annealing conditions indicated soft magnetic behavior. Saturation specific magnetization from 8 21 emu/g was observed for samples annealed at temperature between 950 and 1150 °C. Variation of specific saturation magnetization with respect to annealing temperature was related with the distribution of Fe cations in the tetrahedral and octahedral sites of MgFe2O4. Electrical properties of the samples annealed at different temperatures were measured to analyze the coexistence of ferroelectric phase. Dielectric constant varying from 15 to 200 with respect to frequency was observed for samples annealed from 950 to 1150 °C. 相似文献
19.
用传统的固相烧结工艺,制备了钼掺杂铁电陶瓷样品SrBi4Ti4O15(SBTi)铁电陶瓷SrBi4-2x/3Ti4-xMoxO15(x=0.00,0.003,0.012,0.03,0.06,0.09).X射线衍射的结果表明,样品均为单一的层状钙钛矿结构相,Mo掺杂未改变SBTi的晶体结构.通过扫描电子显微镜观测发现,样品晶粒为片状,随掺杂量的增加,晶粒逐
关键词:
4Ti4O15')" href="#">SrBi4Ti4O15
Mo掺杂
剩余极化
居里温度 相似文献
20.
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs. 相似文献