首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Dipolar couplings provide valuable information on order and dynamics in liquid crystals. For measuring heteronuclear dipolar couplings in oriented systems, a new separated local field experiment is presented here. The method is based on the dipolar assisted polarization transfer (DAPT) pulse sequence proposed recently (Chem. Phys. Lett. 2007, 439, 407) for transfer of polarization between two spins I and S. DAPT utilizes the evolution of magnetization of the I and S spins under two blocks of phase shifted BLEW-12 pulses on the I spin separated by a 90 degree pulse on the S spin. Compared to the rotating frame techniques based on Hartmann-Hahn match, this approach is easy to implement and is independent of any matching conditions. DAPT can be utilized either as a proton encoded local field (PELF) technique or as a separated local field (SLF) technique, which means that the heteronuclear dipolar coupling can be obtained by following either the evolution of the abundant spin like proton (PELF) or that of the rare spin such as carbon (SLF). We have demonstrated the use of DAPT both as a PELF and as a SLF technique on an oriented liquid crystalline sample at room temperature and also have compared its performance with PISEMA. We have also incorporated modifications to the original DAPT pulse sequence for (i) improving its sensitivity and (ii) removing carrier offset dependence.  相似文献   

2.
NMR spectra of molecules oriented in liquid crystals provide homo- and heteronuclear dipolar couplings and thereby the geometry of the molecules. Several inequivalent dilute spins such as 13C and 15N coupled to protons form different coupled spin systems in their natural abundance and appear as satellites in the proton spectra. Identification of transitions belonging to each spin system is essential to determine heteronuclear dipolar couplings, which is a formidable task. In the present study, using 15N-1H and 13C-1H HSQC, and HMQC experiments we have selectively detected spectra of each rare spin coupled to protons. The 15N-1H and 13C-1H dipolar couplings have been determined in the natural abundance of 13C and 15N for the molecules pyrazine, pyrimidine and pyridazine oriented in a thermotropic liquid crystal.  相似文献   

3.
We describe a magic-angle spinning NMR experiment for selective (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled solids, where multiple (13)C-(15)N and (13)C-(13)C interactions complicate the accurate measurement of structurally interesting, weak (13)C-(15)N dipolar couplings. The new experiment, termed FSR (frequency selective REDOR), combines the REDOR pulse sequence with a frequency selective spin-echo to recouple a single (13)C-(15)N dipolar interaction in a multiple spin system. Concurrently the remaining (13)C-(15)N dipolar couplings and all (13)C-(13)C scalar couplings to the selected (13)C are suppressed. The (13)C-(15)N coupling of interest is extracted by a least-squares fit of the experimentally observed modulation of the (13)C spin-echo intensity to the analytical expression describing the dipolar dephasing in an isolated heteronuclear spin pair under conventional REDOR. The experiment is demonstrated in three uniformly (13)C,(15)N-labeled model systems: asparagine, N-acetyl-L-Val-L-Leu and N-formyl-L-Met-L-Leu-L-Phe; in N-formyl-[U-(13)C,(15)N]L-Met-L-Leu-L-Phe we have determined a total of 16 internuclear distances in the 2.5-6 A range.  相似文献   

4.
NMR spectroscopy is a powerful means of studying liquid‐crystalline systems at atomic resolutions. Of the many parameters that can provide information on the dynamics and order of the systems, 1H–13C dipolar couplings are an important means of obtaining such information. Depending on the details of the molecular structure and the magnitude of the order parameters, the dipolar couplings can vary over a wide range of values. Thus the method employed to estimate the dipolar couplings should be capable of estimating both large and small dipolar couplings at the same time. For this purpose, we consider here a two‐dimensional NMR experiment that works similar to the insensitive nuclei enhanced by polarization transfer (INEPT) experiment in solution. With the incorporation of a modification proposed earlier for experiments with low radio frequency power, the scheme is observed to enable a wide range of dipolar couplings to be estimated at the same time. We utilized this approach to obtain dipolar couplings in a liquid crystal with phenyl rings attached to either end of the molecule, and estimated its local order parameters.  相似文献   

5.
A low radio frequency power polarization inversion spin exchange at the magic angle (PISEMA) pulse sequence is described for the measurement of heteronuclear dipolar couplings from solids. The method employs a time averaged nutation concept to significantly reduce the rf power required to spin-lock low gamma nuclear spins in PISEMA experiments. The efficacy of the 2D method is demonstrated on a single crystal of n-acetyl-L-(15)N-valyl-L-(15)N-leucine dipeptide to measure (1)H-(15)N dipolar couplings and a liquid crystal sample to measure (1)H-(13)C dipolar couplings.  相似文献   

6.
This contribution describes a method that manipulates the alignment director of a liquid crystalline sample to obtain anisotropic magnetic interaction parameters, such as dipolar coupling, in an oriented liquid crystalline sample. By changing the axis of rotation with respect to the applied magnetic field in a spinning liquid crystalline sample, the dipolar couplings present in a normally complex strong coupling spectrum are scaled to a simple weak coupling spectrum. This simplified weak coupling spectrum is then correlated with the isotropic chemical shift in a switched angle spinning (SAS) two-dimensional (2D) experiment. This dipolar-isotropic 2D correlation was also observed for the case where the couplings are scaled to a degree where the spectrum approaches strong coupling. The SAS 2D correlation of C(6)F(5)Cl in the nematic liquid crystal I52 was obtained by first evolving at an angle close to the magic angle (54.7 degrees ) and then directly detecting at the magic angle. The SAS method provides a 2D correlation where the weak coupling pairs are revealed as cross-peaks in the indirect dimension separated by the isotropic chemical shifts in the direct dimension. Additionally, by using a more complex SAS method which involves three changes of the spinning axis, the solidlike spinning sideband patterns were correlated with the isotropic chemical shifts in a 2D experiment. These techniques are expected to enhance the interpretation and assignment of anisotropic magnetic interactions including dipolar couplings for molecules dissolved in oriented liquid crystalline phases.  相似文献   

7.
In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.  相似文献   

8.
Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints, such as heteronuclear dipolar couplings between 1H, 13C, and 31P nuclei, in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques, such as PISEMA. In addition, multiple dipolar couplings can be measured accurately, and the presence of a strong dipolar coupling does not suppress the weak couplings. High-resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins.  相似文献   

9.
Measurement of 1H-1H dipolar couplings in macromolecules, weakly oriented by a dilute liquid crystalline medium, is generally limited to the largest such interactions. By removing dipolar couplings to nearest neighbors, either by decoupling, deuteration, or both, more remote interactions become accessible. The approach is demonstrated for measurement of amide-amide interactions in the proteins calmodulin and ubiquitin and permits observation of direct dipolar couplings between protons up to 7 A apart. Quantitative evaluation of 1H-1H dipolar couplings measured in ubiquitin shows excellent agreement with its solution structure.  相似文献   

10.
G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.  相似文献   

11.
In oriented-sample (OS) solid-state NMR of membrane proteins, the angular-dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N-labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple-resonance NMR technique, which was applied to uniformly doubly (15N, 13C)-labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α-helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α-helical transmembrane structure for Pf1 protein.  相似文献   

12.
This paper presents a theoretical, numerical, and experimental study of a new class of separated local field (SLF) techniques. These techniques are based on the heteronuclear isotropic mixing leading to spin exchange via the local field (HIMSELF). It is shown that highly efficient and robust SLF experiments can be designed based on double channel windowless homonuclear decoupling sequences. Compared to rotating frame techniques based on Hartmann-Hahn cross polarization, the new approach is less susceptible to the frequency offset and chemical shift interaction and can be applied in the structural studies of macromolecules that are uniformly labeled with isotopes such as (13)C and (15)N. Furthermore, isotropic mixing sequences allow for transfer of any magnetization component of one nucleus to the corresponding component of its dipolar coupled partner. The performance of HIMSELF is studied by analysis of the average Hamiltonian and numerical simulation and is experimentally demonstrated on a single crystalline sample of a dipeptide and a liquid crystalline sample exhibiting motionally averaged dipolar couplings.  相似文献   

13.
Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.  相似文献   

14.
The anisotropy of nuclear spin interactions results in a unique mapping of structure to the resonance frequencies and split tings observed in NMR spectra, however, the determination of molecular structure from experimentally measured spectral parameters is complicated by angular ambiguities resulting from the symmetry properties of dipole-dipole and chemical shift interactions. This issue can be addressed through the periodicity inherent in secondary structure elements, which can be used as an index of topology. Distinctive wheel-like patterns are observed in two-dimensional 1H-15N heteronuclear dipolar/15N chemical shift PISEMA (polarization inversion spin-exchange at the magic angle) spectra of helical membrane proteins in highly aligned lipid bilayer samples. One-dimensional dipolar waves are an extension of two-dimensional PISA (polarity index slant angle) wheels to map protein structure in NMR spectra of both highly and weakly aligned samples. Dipolar waves describe the periodic wavelike variations of the magnitudes of the static heteronuclear dipolar couplings as a function of residue number in the absence of chemical shift effects. Weakly aligned samples of proteins display these same effects, primarily as residual dipolar couplings (RDCs), in solution NMR spectra. The corresponding properties of the RDCs in solution NMR spectra of weakly aligned helices represent a convergence of solid-state and solution NMR approaches to structure determination.  相似文献   

15.
Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N{31P} rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N{31P} REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and applied the above approach to reanalyze the 15N{31P} REDOR of the lysine side chain approaching the HAP surface and have refined the binding models proposed earlier. We obtain 15N-31P distances between 3.3 and 5 A from these models that are indicative of the possibility of a lysine-phosphate hydrogen bond.  相似文献   

16.
NMR spectra of molecules oriented in thermotropic liquid crystalline media provide information on the molecular structure and order. The spins are generally strongly dipolar coupled and the spectral analyses require the tedious and time consuming numerical iterative calculations. The present study demonstrates the application of multiple quantum spin state selective detection of single quantum transitions for mimicking the homonuclear decoupling and the direct estimation of an element of ordering matrix. This information is utilized to estimate the nearly accurate starting dipolar couplings for iterative calculations. The studies on the spectra of strongly dipolar coupled five and six interacting spin systems are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We describe three-dimensional magic-angle-spinning NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. The approaches employ transferred echo double resonance (TEDOR) for (13)C-(15)N coherence transfer and (15)N and (13)C frequency labeling for site-specific resolution, and build on several previous 3D TEDOR techniques. The novel feature of the 3D TEDOR pulse sequences presented here is that they are specifically designed to circumvent the detrimental effects of homonuclear (13)C-(13)C J-couplings on the measurement of weak (13)C-(15)N dipolar couplings. In particular, homonuclear J-couplings lead to two undesirable effects: (i) they generate anti-phase and multiple-quantum (MQ) spin coherences, which lead to spurious cross-peaks and phase-twisted lines in the 2D (15)N-(13)C correlation spectra, and thus degrade the spectral resolution and prohibit the extraction of reliable cross-peak intensities, and (ii) they significantly reduce cross-peak intensities for strongly J-coupled (13)C sites (e.g., CO and C(alpha)). The first experiment employs z-filter periods to suppress the anti-phase and MQ coherences and generates 2D spectra with purely absorptive peaks for all TEDOR mixing times. The second approach uses band-selective (13)C pulses to refocus J-couplings between (13)C spins within the selective pulse bandwidth and (13)C spins outside the bandwidth. The internuclear distances are extracted by using a simple analytical model, which accounts explicitly for multiple spin-spin couplings contributing to cross-peak buildup. The experiments are demonstrated in two U-(13)C,(15)N-labeled peptides, N-acetyl-L-Val-L-Leu (N-ac-VL) and N-formyl-L-Met-L-Leu-L-Phe (N-f-MLF), where 20 and 26 (13)C-(15)N distances up to approximately 5-6 A were measured, respectively. Of the measured distances, 10 in N-ac-VL and 13 in N-f-MLF are greater than 3 A and provide valuable structural constraints.  相似文献   

18.
TROSY-based HN(CO)CA 2D and 3D pulse schemes are presented for measurement of (13)C(alpha)-(13)C(beta) dipolar couplings in high molecular weight (15)N,(13)C,(2)H-labeled proteins. In one approach, (13)C(alpha)-(13)C(beta) dipolar couplings are obtained directly from the time modulation of cross-peak intensities in a set of 2D (15)N-(1)HN correlated spectra recorded in both the presence and absence of aligning media. In a second approach 3D data sets are recorded with (13)C(alpha)-(13)C(beta) couplings encoded in a frequency dimension. The utility of the experiments is demonstrated with an application to an (15)N,(13)C,(2)H-labeled sample of the ligand free form of maltose binding protein. A comparison of experimental dipolar couplings with those predicted from the X-ray structure of the apo form of this two-domain protein establishes that the relative orientation of the domains in solution and in the crystal state are very similar. This is in contrast to the situation for maltose binding protein in complex with beta-cyclodextrin where the solution structure can be generated from the crystal state via a 11 degrees domain closure.  相似文献   

19.
NMR residual dipolar couplings between couple of nuclei PQ, (1)D(PQ), measured on neutral dilute liquid crystal solutions, provide valuable long-range structural information of biomolecules. An accurate and simple method for the prediction of the alignment produced as consequence of sterical interactions between the solute and the bicelles is proposed called TRacking Alignment from Moment of Inertia TEnsor--TRAMITE. The method use the information encoded in the moment of inertia of the molecules to calculate the orientation tensor and predict the (1)D(PQ) values. Examples on proteins and oligosaccharides are presented which cover a wide range of sizes and shapes, along with a scheme for the application of the method to the analysis of flexible molecules.  相似文献   

20.
A sensitive 2D NMR experiment for simultaneous time-shared TROSY-type detection of amide and methyl groups in high-molecular-weight proteins is described. The pulse scheme is designed to preserve the slowly decaying components of both 1H-15N and methyl 13CH3 spin systems in the course of indirect evolution and acquisition periods. The proposed methodology is applied to the study of substrate binding to {U-[15N,2H]; Ile-[13CH3]; Leu,Val-[13CH3/12CD3]}-labeled 82-kDa enzyme Malate Synthase G and is expected to accelerate NMR-based screening of large proteins labeled with 15N and selectively labeled with 13CH3 at methyl sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号