首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the effect of dopant (boron ‘B’–nitrogen ‘N’) position and density on electronic transport properties of a BN co-doped silicon carbide nanotube (SiCNT). The results show an increase in conductance when both BN impurities are far in space from each other. Orbital delocalization and appearance of new electronic states around Fermi level contribute to the current when this spacing is increased. On the other hand, a reduction in SiCNT conductivity was observed when BN dopant density was increased. This is attributed to the electronic states moving away from the Fermi level and orbital localization at higher bias voltages.  相似文献   

2.
We investigate the electronic transport properties of silicon carbide nanotubes (SiCNT) in presence of both boron (B) and nitrogen (N) impurities. The results show that co-doping BN impurities suppresses the important negative differential resistance (NDR) property. NDR suppression is attributed to the introduction of new electronic states near the Fermi level followed by weak orbital localization. BN co-doping results in exponential current-voltage (I-V) characteristics which is in contrast to linear I-V characteristics for individual boron and nitrogen doped SiCNTs. HOMO has no contribution from B impurity, whereas, LUMO has contribution from N impurity at low and high bias.  相似文献   

3.
We have performed a comparative density functional theory study on adsorption of hydrogen peroxide (H2O2) on the boron nitride and silicon carbide nanotubes (BNNT and SiCNT) in terms of energetic, geometric, and electronic properties. It has been found that the molecule is chemically adsorbed on both of the tubes so that its interaction with SiCNT (adsorption energy ∼−0.97 eV) is much stronger than that with BNNT (adsorption energy ∼−0.47 eV). The H2O2 adsorption on BNNT slightly decreases its work function, increasing the field electron emission from the BNNT surface while it may not affect that of the SiCNT. In addition, the adsorption process may increase the electrical conductivity of SiCNT while does not affect that of the BNNT, significantly. We believe that the SiCNT may be a potential candidate for detection of H2O2.  相似文献   

4.
Phosphorus- and boron-doped hydrogenated amorphous silicon thin films were prepared by the plasma-enhanced chemical vapor deposition method. As-deposited samples were thermally annealed at various temperatures to get nanocrystalline Si with sizes around 10 nm. X-ray photoelectron spectroscopy measurements demonstrated the presence of boron and phosphorus in the doped films. It is found that the nanocrystallization occurs at around 600 °C for the B-doped films, while it is around 700-800 °C for the P-doped samples. For the P-doped samples, the dark conductivity decreases at first and then increases with the annealing temperature. While for the B-doped samples, the dark conductivity monotonously increases with increasing annealing temperature. As a result, the carrier transport properties of both P- and B-doped nanocrystalline Si films are dominated by the gradual activation of dopants in the films. The conductivity reaches 22.4 and 193 S cm−1 for P- and B-doped sample after 1000 °C annealing.  相似文献   

5.
In the present study, the adsorption and decomposition of diazomethane (DAZM) on the surface of (6,0) zigzag silicon carbide nanotube (SiCNT) are investigated using density functional theory calculations. The geometry structures of the three stable configurations, adsorption energies and electronic properties of DAZM adsorption on the surface of SiCNT are investigated. It was found that the DAZM molecule is decomposed over the surface of (6,0) SiCNT with activation energy (Eact) of 0.523 eV. The curvature effect on the adsorption energies of the DAZM molecule is also considered by studying (5,0) and (7,0) SiCNTs. The results display that DAZM adsorption over smaller diameter of SiCNT is thermodynamically more favourable than larger one.  相似文献   

6.
A systematic study of Fe atom encapsulation and adsorption in armchair SiC nanotubes (SiCNT) with diameters in the range of 5.313 to 10.582 Å has been performed using hybrid density functional theory and a finite cluster approximation. A detailed comparison of the binding energies, equilibrium positions, Mulliken charges, and spin magnetic moments of Fe atoms has been performed for three types of nanotubes. The electronic states, HOMO–LUMO gaps, and changes in gaps with respect to the bare nanotube gaps have been investigated as well. Our results show that the properties of SiCNT can be modified by Fe atom encapsulation and adsorption. Binding energies of the encapsulated and adsorbed systems indicate that these structures are stable and show site dependence. For both cases a significant band gap decrease is observed for type 1 nanotubes enabling band gap tailoring. This decrease is not observed for the other two types with a larger diameter. All structures are found to have magnetic ground states with high magnetic moments indicating the possibility of them being used in spintronics applications.  相似文献   

7.
刘学杰  任元 《计算物理》2013,30(3):433-440
基于密度泛函理论(DFT)的第一性原理,计算Si原子在Ti族和V族氮化物中以及B、C和Ge原子在TiN晶体中固溶的稳定结构,讨论置换型和间隙型固溶的低能量稳定结构与晶体间距的关系,研究金属氮化物和固溶原子固溶结构的力学性能.结果表明:Si原子在TiN、ZrN、HfN和TaN晶体中固溶以及Ge原子在TiN晶体中固溶情况为,单原子不进入对应过渡金属氮化物晶体中形成间隙固溶或置换固溶,随着晶体间距离变化单原子可以在晶体之间形成间隙固溶或置换固溶;Si原子在NbN以及B原子在TiN晶体中可以实现间隙固溶,而不能形成置换固溶;Si原子在VN和C原子在TiN晶体中固溶结构形式均为置换固溶.单原子固溶形成低能量置换型固溶体和间隙型固溶体的弹性常数、体模量和剪切模量均低于原过渡金属氮化物的对应值.  相似文献   

8.
We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.  相似文献   

9.
气体吸附对碳化硅纳米管的电子结构的影响是理解碳化硅纳米管气敏传感器工作机理的基础.基于密度泛函理论,利用CASTEP软件包计算NO2气体吸附前后的碳化硅纳米管的结构及其电子结构.结果表明,NO2气体与碳化硅纳米管间形成了稳定的吸附,并明显的增强了碳化硅纳米管的导电特性.碳化硅纳米管是制备气体传感器的理想材料之一,为开发应用于NO2气体检测的碳化硅纳米管提供必要的理论支持.  相似文献   

10.
We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.  相似文献   

11.
本文基于密度泛函理论研究了扶手椅型碳化硅纳米管(SiCNT)的电子结构、成键机制以及其光学性质。研究结果表明:当碳和硅的原子比为1∶1时,SiCNT的结构最为稳定,并且表现出诸多的优良性质。通过分析计算结果我们发现,SiCNT是间接带隙材料,并且管子的带隙随着直径的增加而增加。从SiCNT的轨道图谱中我们看到碳和硅原子之间属于sp2杂化,同时硅原子周围的电子密度明显要低于碳原子周围的电子密度。对能态密度的计算我们得知碳原子和硅原子分别主导价带和导带。与其它纳米管(BN)有所不同,SiCNT的光学性质更接近于各向同性材料。  相似文献   

12.
The distribution and etching rate of flow pattern defects (FPDs) in germanium- doped Czochralski (GCZ) silicon (Si) wafers with light and heavy dopants—either boron (B) or phosphorus (P)—have been investigated. In the lightly doped (both B and P) Czochralski (CZ) Si crystals, the FPD densities in GCZ Si decrease with the increase of Ge concentration. In the heavily B-doped GCZ Si crystals, the FPDs are denser compared with the heavily B-doped CZ Si, whereas the reverse is true in the heavily P-doped GCZ Si and CZ Si crystals. It is also shown that the etching rates in the lightly doped CZ Si crystals can be slightly enlarged by the Ge doping. It is proposed that, in lightly doped GCZ Si, Ge doping could consume free vacancies and thus form high-density but small-sized voids, while the stress compensation induced by B and Ge atoms could increase the vacancy concentration in heavily B-doped GCZ Si, leading to sparse and large-sized voids.  相似文献   

13.
Using the DFT-B3LYP calculations we investigate the adsorption of Li atom on CNT, BNNT, AlNNT and SiCNT. We found that Li atom can be chemisorbed on zig-zag SiCNT with binding energy of −2.358 eV and charge transfer of 0.842 |e|, which are larger than the results of other nanotubes. The binding energy of Li on SiCNT is foun to be stronger than activation energy barrier indicating that Li metal could be well dispersed on SiCNTs. Furthermore, the average voltage caused by the lithium adsorption on SiCNT demonstrated that SiCNTs could exhibit as a stable anode similar to the lithium metal anode. The binding nature has been rationalized by analyzing the electronic structures. Our findings demonstrate that Li-BNNT, Li-SiCNT and Li-AlNNT systems exhibit spin polarized behaviors and can fascinating potential application in future spintronics. Also, Li-SiCNT system with rather small band gap might be a promising material for optical applications and active molecule in its environment.  相似文献   

14.
The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.  相似文献   

15.
程超群  李刚  张文栋  李朋伟  胡杰  桑胜波  邓霄 《物理学报》2015,64(6):67102-067102
运用第一性原理方法, 计算了B, P两种元素单掺杂和共掺杂的β -Si3N4材料的电子结构和光学性质. 结果表明: B掺杂体系的稳定性更高, 而P掺杂体系的离子性更强; 单掺和共掺杂均窄化带隙, 且共掺在禁带中引入深能级, 使局域态增强; 单掺杂体系介电函数虚部、吸收谱和能量损失谱各峰均发生红移、幅值减小, 而共掺后介电函数虚部主峰出现蓝移、能量损失峰展宽、高能区电子跃迁大大增强, 且控制共掺杂的B, P比例可获得较低的带电缺陷浓度.  相似文献   

16.
采用基于密度泛函理论的第一性原理计算,对本征碳化硅纳米管和掺氮碳化硅纳米管的电子结构进行了计算.计算表明本征(8,0)碳化硅为直接带隙半导体,能带间隙为0.94 eV;掺氮浓度为1.56%和3.12%的碳化硅纳米管的能带间隙减小为0.83 eV和0.74 eV.从差分电荷密度可以看出,能带间隙的减小是氮硅键与碳硅键相比共价成键能力降低的结果. 关键词: 碳化硅纳米管 掺氮 第一性原理 电子结构  相似文献   

17.
The electronic properties of an armchair (4,4) single-walled silicon carbide nanotube (SWSiCNT) with the length and diameter of 22.4 and 6.93 Å, respectively under different tensile strains are investigated by density functional theory (DFT) calculation. The change of highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO) gap of the nanotube has been observed during the elongation process. Our results show that the gap will significantly decrease linearly with the increase of axial strain. Two different slopes are found before and after an 11% strain in the profiles of the HOMO–LUMO gap. The radial buckling has been performed to investigate the radial geometry of nanotube. The partial density of states (PDOS) of two neighboring Si and C atoms of the nanotube are further studied to demonstrate the strain effect on the electronic structure of SiC nanotube. The PDOS results exhibit that the occupied states of Si atom and the unoccupied states of C atom are red-shifted and blue-shifted under stretching, respectively. Mulliken charge analysis reveals that Si and C atoms will become less ionic under the larger strain. The electron differences of silicon carbide nanotube (SiCNT) on tensile loading are also studied.  相似文献   

18.
Abstract

With the channeling technique the lattice location of both As and B is studied in single As-or B-doped and in doubly As-and B-doped silicon single crystals. The influence of the position of the Fermi-level on the displacement of impurity atoms off substitutional lattice sites is investigated by changing the crystals from n- to p?type or vice versa by choosing implant conditions and annealing termperatures for the doubly doped crystals in an appropriate way. Big changes were found in displacement cross sections for As and B after conversion of the crystals from n- to p-type. The results can be explained by assuming that the interaction between primary defects and impurity atoms causing the displacement of the impurity atom is controlled by Coulomb attraction between charged point defects and the impurity atoms.  相似文献   

19.
赵敬芬  王辉  杨在发  高慧  歩红霞  袁晓娟 《中国物理 B》2022,31(1):17302-017302
Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics.Using nonequilibrium Green's function combined with density functional theory,a set of spin filters of hydrogenated zigzag silicene nanoribbons is designed by substituting a silicon atom with a boron one and the spin-correlated transport properties are studied.The results show that the spin polarization can be realized by structural symmetry breaking induced by boron doping.Remarkably,by tuning the edge hydrogenation,it is found that the spin filter efficiency can be varied from 30%to 58%.Moreover,it is also found and explained that the asymmetric hydrogenation can give rise to an obvious negative differential resistance which usually appears at weakly coupled junction.These findings indicate that the boron-doped ZSiNR is a promising material for spintronic applications.  相似文献   

20.
Intrinsic, P- and B-doped hydrogenated amorphous silicon thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited samples were thermally annealed at the temperature of 800 °C to obtain the doped nanocrystalline silicon (nc-Si) films. The microstructures, optical and electronic properties have been evaluated for the undoped and doped nanocrystalline films. X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the substitutional boron and phosphorous in the doped films. It was found that thermal annealing can efficiently activate the dopants in films accompanying with formation of nc-Si grains. Based on the temperature-dependent conductivity measurements, it was shown that the activation of dopant by annealing increased the room temperature dark conductivity from 3.4 × 10−4 S cm−1 to 5.3 S cm−1 for the P-doped films and from 1.28 × 10−3 S cm−1 to 130 S cm−1 for the B-doped films. Meanwhile, the corresponding value of conductivity activation energies was decreased from 0.29 eV to 0.03 eV for the P-doped films and from 0.3 eV to 5.6 × 10−5 eV for the B-doped films, which indicated the doped nc-Si films with high conductivity can be achieved with the present approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号