首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1-2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of Pr=23.3 μC/cm2, d33=185 pC/N, and kp=46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.  相似文献   

2.
Li0.5−x/2CuxFe2.5−x/2O4 (where x=0.0-1.0) ferrites have been prepared by solid-state reaction. X-ray diffraction was used to study the structure of the above investigated ferrites at various sintering temperatures. Samples were sintered at 1000, 1100 and 1200 °C for 3 h in the atmosphere. For the sintering temperature of 1000 °C, Li0.5−x/2CuxFe2.5−x/2O4 undergoes cubic to tetragonal transformation for higher Cu content. However, for the sintering temperature of 1100 and 1200 °C, X-ray diffraction patterns are mainly characterized by fcc structure, though presence of tetragonal distortion was found by other temperature dependence of initial permeability curves. The lattice parameter, X-ray density and bulk density were calculated for different compositions. Curie temperature was measured from the temperature dependence of initial permeability curves. Curie temperatures of Li-Cu mixed ferrites were found to decrease with the increase in Cu2+ content due to the reduction of A-B interaction. As mentioned earlier, temperature dependence of initial permeability curves was characterized by tetragonal deformation for the samples containing higher at% of Cu. The complex initial permeability has been studied for different samples. The B-H loops were measured at constant frequency, f=1200 Hz, at room temperature (298 K). Coercivity and hysteresis loss were estimated for different Cu contents.  相似文献   

3.
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25.  相似文献   

4.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

5.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

6.
Cobalt-ferrite (CoFe2O4) based materials are suitable candidates for magnetomechanical sensor applications owing to a strong sensitivity of their magnetostriction to an applied magnetic field. Zn-doped cobalt-ferrites, with nominal compositions CoFe2−xZnxO4 (x=0–0.3), were synthesized by auto-combustion technique using Co- , Fe- , and Zn-nitrate as precursors. X-ray spectra analysis and Transmission electron microscopy studies revealed that the as-prepared powders were comprised of nano-crystalline (∼25–30 nm) cubic-spinel phase with irregularly-shaped grains morphology along with minor impurity phases. Calcination (800 °C for 3 h) of the precursor followed by sintering (1300 °C for 12 h) resulted in a single phase cubic-spinel structure with average grain size ∼2–4 μm, as revealed from scanning electron micrographs. The magnitude of coercive field decreases from ∼540 Oe for x=0 to 105 Oe for x=0.30. Saturation magnetization initially increases and peaks to ∼87 emu/g for x=0.2 and then decreases. The peak value of magnetostriction monotonically decreases with increasing Zn content in the range 0.0–0.3; however the piezomagnetic coefficient (/dH) reaches a maximum value of 105×10−9 Oe−1 for x=0.1. The observed variation in piezomagnetic coefficient in the Zn substituted cobalt ferrite is related to the reduced anisotropy of the system. The Zn-doped cobalt-ferrite (x=0.1) having high strain derivative could be a potential material for stress sensor application.  相似文献   

7.
Structural and magnetic properties of Cu substituted Ni0.50−xCuxZn0.50Fe2O4 ferrites (where x=0.0-0.25) prepared by an auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. The lattice parameter increases with the increase in Cu2+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 22 to 72 nm. The theoretical density increases with increase in copper content whereas the Néel temperature decreases. The bulk density, grain size and permeability increases up to a certain level of Cu2+ substitution, beyond that all these properties decrease with increase in Cu2+ content. The bulk density increases with increase in sintering temperatures up to 1250 °C for the parent composition, while for substituted compositions it increases up to 1200 °C. Due to substitution of Cu2+, the real part of the initial permeability increases from 97 to ∼390 for the sample sintered at 1100 °C and from 450 to 920 for the sample sintered at 1300 °C. The ferrites with higher initial permeability have a relatively lower resonance frequency, which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity. The saturation magnetization, Ms, and the number of Bohr magneton, n(μB), decreases up to x=0.15 due to the reduction of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n(μB) values are enhanced. The substitution of Cu2+ influences the magnetic parameters due to modification of the cation distribution.  相似文献   

8.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

9.
(Ni0.25Cu0.20Zn0.55)LaxFe2−xO4 ferrite with x=0.00, 0.025, 0.050 and 0.075 compositions were synthesized through nitrate–citrate auto-combustion method. Crystalline spinel ferrite phase with about 16–19 nm crystallite size was present in the as-burnt ferrite powder. These powders were calcined, compacted and sintered at 950 °C for 4 h. Initial permeability, magnetic loss and AC resistivity of different compositions were measured in the frequency range from 10 Hz to 10 MHz. Saturation magnetization and hysteresis parameters were measured at room temperature with a maximum magnetic field of 10 kOe. Permeability and AC resistivity were found to increase and magnetic loss decreased with La substitution for Fe, up to x=0.025. Saturation magnetization and coercive field also increases up to that limit. The electromagnetic properties were found best in the ferrite composition of x=0.025, which would be better for more miniaturized multi layer chip inductor.  相似文献   

10.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

11.
Preparation of ferroelectric bismuth titanate (Bi4Ti3O12) is carried out by solution combustion route with urea as fuel at much lower calcinations temperatures. The single phase bismuth titanate was obtained after calcinations at 800 °C. SEM micrographs of the calcined powders show agglomerated, flaky and foamy morphology, which is typical of combustion synthesis and that of sintered ceramics shows the grain formation. Behavior of dielectric constant and dielectric loss as a function of temperature of as-prepared sample are reported in this communication. Ferroelectric to paraelectric phase transition occurs at the temperature Tc ∼ 660 °C. Its remnant polarization (2Pr) is very less of the order of 0.012 μC/cm2.  相似文献   

12.
The (Zr0.8Sn0.2)TiO4 material (ZST), has been prepared by solid state reaction and characterized. The samples were sintered in the temperature range of 1260-1320 °C for 2 h. The effects of sintering parameters like sintering temperature (Ts) and MgO addition (0.2 wt.%) on structural and dielectric properties were investigated. Bulk density increases from 4900 to 5050 kg/m3 with the increase of sintering temperature. The effect of MgO addition is to lower the sintering temperature in order to obtain well sintered samples with high value of bulk density. The material exhibits a dielectric constant ?r ∼ 37 and high values of the Q × f product, greater than 45,000, at microwave frequencies. The dielectric properties make the ZST material very attractive for microwave applications such as dielectric resonators, filters, dielectric antennas, substrates for hybrid microwave integrated circuits, etc.  相似文献   

13.
[Y1.05Bi0.75Ca1.2](Fe4.4−xInxV0.6)O12(Inx:Bi-CVG) ferrite material has been prepared successfully by a solid-state reaction method. The effects of In3+ substitution and sintering temperatures on the bulk density, microstructure and magnetic properties are performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), materials automatic test system (MATS) and microwave ferrite parameters meter. The results show that In3+ can lower the sintering temperatures and enhance the magnetic properties of Bi-CVG ferrite. Besides, all sintered specimens with different In3+ contents show a single garnet crystal structure. The specimen of [Y1.05Bi0.75Ca1.2](Fe4In0.4V0.6)O12 sintered at 1075 °C shows homogenous distribution of grain size and densified microstructures. The ferromagnetic resonance linewidth (ΔH) has an increase with In3+ contents. Additionally, the sample has the optimum magnetic properties: ρ=5.23 g/cm3, Br=31.3 mT, Hc=378.8 A/m, 4πMs=506.2×10−4 T.  相似文献   

14.
Y2.6−xCa0.4+xZrxV0.2Fe4.8−xO12 (Zrx:YCaVIG) ferrite materials have been prepared by an oxide process. The phase formation and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The effects of Zr4+ substitution on phase compositions, sintering properties, microstructures and electromagnetic properties were investigated. The results indicate that all the sintered specimens with different Zr4+ contents show a single garnet structure. The addition of ZrO2 can gradually increase the lattice constant, and lower the sintering temperature and the theoretical density. With the increase of Zr4+ content, the dielectric loss (tan δε) and coercivity (Hc) decrease and then slightly increase, which is due to the variation of the microstructure. But the saturation magnetization (4πMs) shows the opposite variation compared to the former two properties. However, the dielectric constant (εr) remains stable and remanence (Br) monotonically declines. Finally, the specimen of Y2.3Ca0.7Zr0.3V0.2Fe4.5O12 sintered at 1350° possesses the optimum electromagnetic properties: εr=14.8, tan δε=1.35×10−3, 4πMs=1638 Gs, Br=596 Gs, Hc=0.75 Oe and ΔH (ferromagnetic resonance linewidth)=66 Oe.  相似文献   

15.
Thermoanalytical characteristics and Raman scattering of high purity sulfur and ternary bulk glasses GexAsxS(100−2x) for x=4-22 at. % were studied. The intermediate phase characterized by vanishing of non-reversing heat flow ΔHnr, i.e. so-called the thermally reversing window was found between mean coordination number 〈r〉∼2.28-2.47. Separated phase of non-crystalline cycloocta-S, manifesting itself by λ-transition at ∼155 °C, was found for glasses with sulfur content higher than ∼80 at.%. Raman spectra of studied Ge-As-S glasses showed different shapes in three different areas according to three distinct phases of network glasses-floppy, intermediate, rigid.  相似文献   

16.
This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature even at industrial scale. The best sintered magnets were produced by jet-milling the powder (to achieve an average 3.4 μm particle size), and then aligned, pressed and sintered under argon at 1100 °C for 3 h followed by appropriate heat treatment. The magnetic properties of the resulting magnets were: (BH)m=403.8 kJ m−3 (±4.7 kJ m−3), Br=1430 mT (±9 mT) and iHc=907 kA m−1 (±12 kA m−1). Large grain growth, in excess of 100 μm in the Zr-free magnets, was observed during sintering at 1100 °C. This did not occur in the presence of Zr. These observations imply that the sensitivity of this class of magnets to high sintering temperatures is greatly reduced by Zr addition. Corrosion resistance of NdFeB was therefore significantly improved by the addition of small amounts of Zr.  相似文献   

17.
Ba0.6Sr0.4TiO3 ceramics were prepared by a citrate precursor method. The structure and nonlinear dielectric properties of the resulting ceramics were investigated within the sintering temperature range 1200-1300 °C. Adopting fine Ba0.6Sr0.4TiO3 powder derived from the citrate method was confirmed to be effective in reducing the sintering temperatures required for densification. The ceramic specimens sintered at 1230-1280 °C presented relative densities of around 95%. A significant influence of sintering temperature on the microstructure and nonlinear dielectric properties was detected. The discrepancy in nonlinear dielectric behavior among the specimens sintered at different temperatures was qualitatively interpreted in terms of the dielectric response of polar micro-regions under bias electric field. The specimens sintered at 1230 and 1250 °C attained superior nonlinear dielectric properties, showing relatively low dielectric losses (tan δ) of 0.24% and 0.22% at 10 kHz together with comparatively large figure of merits (FOM) of 121 and 142 at 10 kHz and 20 kV/cm, respectively.  相似文献   

18.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

19.
The effects of 0.01 and 0.1 mol B2O3 addition to the microstructure and magnetic properties of a Ni–Zn ferrite composition expressed by a molecular formula of Ni0.4Zn0.6Fe2O4 were investigated. The toroid-shaped samples prepared by pressing the milled raw materials used in the preparation of the composition were sintered in the range of 1000–1300 °C. The addition of 0.01 mol B2O3 increased the grain growth and densification giving rise to reduced intergranular and intragranular porosity due to liquid-phase sintering. The sintered toroid sample at 1300 °C gave the optimum magnetic properties of Br=170 mT, Hc=0.025 kA/m and a high initial permeability value of μi=4000. The increment of the B2O3 content to 0.1 mol resulted in a pronounced grain growth and also gave rise to large porosity due to the evaporation of B2O3 at higher sintering temperatures. Hence, it resulted in an air-gap effect in the hysteresis curves of these samples.  相似文献   

20.
In this study, effect of lanthanum substitution on the phase composition, lattice parameters and magnetic properties of barium hexaferrite has been studied in samples synthesized in ammonium nitrate melt. Samples, prepared with different lanthanum amount and having various initial Fe/(Ba+La) ratios in between 12 and 2 {(Ba1−xLaxn Fe2O3, where 0≤x≤1 and 1≤n≤6)}, are sintered at temperatures from 800 to 1200 °C. The lattice parameters, both a and c, decreases with increasing La amount which results in a decrease of the unit cell volume. The scanning electron microscope micrographs show that the pure and La-substituted sample with x=0.3, both calcinated at 1000 °C, have grain sizes smaller than 1 μm. The coercivities of the La-substituted samples increase with increasing La amount and reaches to a maximum value of 5.73 kOe, when x=0.3. Sintering at higher temperatures (above 1000 °C) decreases the coercivity, resembling a transition from single to multi-domain behavior of the particles, while saturation magnetization of the samples continues to increase due to the increasing grain size. Magnetization measurements of the samples prepared with different Fe/(Ba+La) molar ratios, n's, revealed that the specific saturation magnetization slightly increases with decreasing n, while coercivities fluctuates around 5.5 kOe. However, a sharp increase in the saturation magnetization has been observed in the sample having n=1 and washed in HCl. It was measured as 59.2 emu/g at 15 kOe, which is higher than that of the pure sample (57.5 emu/g). Thus, the magnetic parameters are optimized in the sample Ba0.7La0.3Fe12O19 so as to maximize both coercivity and specific saturation magnetization in the HCl-washed sample synthesized by starting with an unusually low Fe/(Ba+La) molar ratio of 2 (or n=1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号