首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Polycrystalline Mg0.6Cu0.4Fe2O4 ferrites have been prepared using solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and magnetic measurements.Using mean field theory and high-temperature series expansions (HTSE), extrapolated with the padé approximants method, the magnetic properties of Mg1−xCuxFe2O4 have been studied. The nearest neighbor super-exchange interactions for intra-site and inter-site of the Mg1−xCuxFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature Tc is calculated as a function of Mg concentration. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements.  相似文献   

2.
Polycrystalline Zn0.6Cu0.4Fe2O4 ferrites have been prepared using a solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and Mössbauer and magnetic measurements. These results have been compared to a more general theoretical study, on ZnxCu1−xFe2O4, based on mean field theory and high-temperature series expansions (HTSE), and extrapolated with the Padé approximant method. The nearest neighbour super-exchange interactions for the intra-site and the inter-site of ZnxCu1−xFe2O4 spinel ferrites, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature TC is calculated as a function of Zn concentration. The theoretical results obtained are in good agreement with the experimental results obtained by magnetic measurements.  相似文献   

3.
Using mean field theory and high-temperature series expansions (HTSEs), extrapolated with the Padé approximants method, the effect of Zn doping on magnetic properties of NiFe2O4 ferrite spinel has been studied. The nearest neighbour super-exchange interactions for intra-site (JAA, JBB) and inter-site (JAB) of the ZnxNi1−xFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The paramagnetic Curie-Weiss temperature θ and the Curie temperature TC are calculated as a function of Zn concentration. The critical exponent γ associated with magnetic susceptibility is calculated. The spin correlation functions intra-plane and inter-plane have been also computed and compared with exchange couplings. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements and Mössbauer spectroscopy.  相似文献   

4.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

5.
The exchange interactions (JBB and JAB are the intra and the inter-sublattice exchange interactions between neighbouring spins, respectively) are obtained by using the general expressions of canting angle and critical temperature obtained by mean field theory of Li0.5Fe2.5−2xAlxCrxO4. The expression of magnetic energy of Li0.5Fe2.5−2xAlxCrxO4 is obtained for different spin configurations and dilution x. The saturation magnetisation of Li0.5Fe2.5-2xAlxCrxO4 is obtained with different values of dilution x. The magnetic phase diagram of Li0.5Fe2.5-2xAlxCrxO4 materials is obtained by high temperature series expansions (HTSEs). The critical exponent associated with the magnetic susceptibility of Li0.5Fe2.5−2xAlxCrxO4 is deduced.  相似文献   

6.
We report the structure and magnetic properties of Pr1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Pr leads to a linear decrease in the lattice constants and the unit cell volume. The samples with x=0 and x=0.8 have spin reorientation temperature. The results are collected in a phase diagram.  相似文献   

7.
The high-temperature series expansions method applied in the systems Mn1−xCuxCr2S4 in the range 0?x?1. The exchange interactions and the magnetic exchange energies are calculated by using the probability law. The high-temperature series expansions have been applied in the spinel Mn1−xCuxCr2S4 systems, combined with the Padé approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on 3D Heisenberg model.  相似文献   

8.
The exchange interactions and the magnetic exchange energies are calculated by using the mean field theory and the probability law of Zn1−xMnxCr2O4 nanoparticles. The high-temperature series expansions have been applied in the spinels Zn1−xMnxCr2O4 systems, combined with the Padé approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on the 3D Heisenberg model.  相似文献   

9.
The structure and magnetic properties of Nd1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Nd leads to a linear decrease in the lattice constants and the unit cell volume, and the magnetic interactions in the Mn sublattice cross over from a ferromagnetic character to an antiferromagnetic one. A typical SmMn2Ge2-like behavior is observed for x=0.6 and 0.8. The results are collected in a phase diagram.  相似文献   

10.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

11.
The perovskite solid solutions of the type La2xSr2−2xCo2xRu2−2xO6 with 0.25≤x≤0.75 have been investigated for their structural, magnetic and transport properties. All the compounds crystallize in double perovskite structure. The magnetization measurements indicate a complex magnetic ground state with strong competition between ferromagnetic and antiferromagnetic interactions. Resistivity of the compounds is in confirmation with hopping conduction behaviour though differences are noted especially for x=0.4 and 0.6. Most importantly, low field (50 Oe) magnetization measurements display negative magnetization during the zero field cooled cycle. X-ray photoelectron spectroscopy measurements indicate the presence of Co2+/Co3+ and Ru4+/Ru5+ redox couples in all compositions except x=0.5. Presence of magnetic ions like Ru4+ and Co3+ gives rise to additional ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the observed negative magnetization.  相似文献   

12.
An analysis is presented of experimental and theoretical results of the MnFeAsyP1−y (0.15≤y≤0.66) and Mn2−xFexAs0.5P0.5 (0.5≤x≤1.0) systems to identify main traits that underlie the mechanism of formation of different antiferromagnetic (AF) phases in the two systems. The discrepancy between the calculated from first principles and experimental values of the magnetic moment in the ferromagnetic phase with cation substitution in the system Mn2−xFexAs0.5P0.5 is due to the appearance of a canted magnetic structure. In this case, the emergence of an AF phase with decreasing iron concentration precedes a significant change in the electronic d-band filling. In the model of the spiral structure in the system of itinerant electrons it is shown that the stabilization of the AF phase with decreasing arsenic concentration, while maintaining the number of d-electrons, is a consequence of changes in the shape of the density of electronic states that occur with a decrease in unit-cell volume.  相似文献   

13.
Magnetic and heat capacity measurements have been carried out on the polycrystalline Gd1−xScxNi2 solid solutions (0≤x≤1), which crystallize in the cubic C15 Laves phases superstructure (space group F4?3m). These solid solutions are ferromagnetic with a Curie temperature below 76 K. Their Curie temperature decreases from 75.4 K for GdNi2 to 13.6 K for Gd0.2Sc0.8Ni2. At high temperatures, all solid solutions, except ScNi2, are Curie-Weiss paramagnets. The Debye temperature as well as phonon, conduction electron and magnetic contributions to the heat capacity have been determined from heat capacity measurements. The magnetocaloric effect has been estimated both in terms of isothermal magnetic entropy change and adiabatic temperature change for selected solid solutions in magnetic fields up to 3 T.  相似文献   

14.
The compounds Ce(Cu1−xNix)4Ga crystallize in the hexagonal CaCu5-type structure for the whole doping range 0≤x≤1. The border compounds CeCu4Ga and CeNi4Ga represent a heavy fermion and fluctuating valence systems, respectively. We report on the studies of the valence evolution in Ce(Cu1−xNix)4Ga employing the X-ray photoemission spectroscopy (XPS) and magnetic susceptibility measurements. The photoemission of the Ce 3d peaks shows a gradual decrease of the occupation of the f states with Ni content. Simultaneously, the hybridization strength and the low temperature magnetic susceptibility are reduced. Within the valence band spectrum a transition from the dominance of the Cu 3d to the dominance of the Ni 3d states is well visible with the traces of the Ce 4f1 states for up to x=0.5.  相似文献   

15.
The ferroelectric compounds Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200-1000 cm−1 three main A1 phonons around 240 (υ1), 630 (υ2) and 816 (υ3) cm−1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm−1, reveals a structural change in the studied solid solutions. The behaviour of the Raman shift of the υ1 mode confirms that in Pb2Na1−xLaxNb5−xFexO15, a clear anomaly occurs in the vicinity of x=0.4.  相似文献   

16.
The critical properties of perovskite manganite La0.67Pb0.33Mn1−xCoxO3 (0≤x≤0.08) around the paramagnetic-ferromagnetic phase transition are investigated through various techniques such as the modified Arrott plot, Kouvel-Fisher method and critical isotherm analysis. Though the nature of this transition was found to be in second order, the estimated critical exponents β (0.233≤β≤0.368), γ (1.03≤γ≤1.40) and δ (4.32≤δ≤5.54) are in between the theoretically predicted values for three-dimensional Heisenberg and tricritical mean-field model. This model suggests the coexistence of the short-range and long-range ferromagnetic orders around the critical temperature. The values of the critical exponents obtained from different methods and the well-obeyed scaling behavior confirm that the calculated exponents are unambiguous and purely intrinsic to the system.  相似文献   

17.
Using first-principles density functional theory within the generalized gradient approximation method, the effect of Zn doping on electronic and magnetic properties of NiFe2O4 ferrite spinel has been studied. The crystal structure of the compounds is assigned to a pseudocubic structure and the lattice constant increases as the Zn concentration increases. Our spin-polarized calculations give a half-metallic state for NiFe2O4 and a normal metal state for ZnxNi1−xFe2O4 (0<x≤0.5). Based on the magnetic properties calculations, it is found that the saturation magnetic moment enhances linearly with increase in the Zn content in NiFe2O4. The Zn doping in NiFe2O4 also induces strong ferrimagnetism since it decreases the magnetic moment of A-sites.  相似文献   

18.
Structural, magnetic properties and magnetostriction studies of Sm1−xNdxFe1.55 (0≤x≤0.56) alloys have been performed. X-ray diffraction analysis confirms the presence of single cubic Laves phase in Sm1-xNdxFe1.55 alloys with 0≤x≤0.48. The lattice parameter of alloys increases linearly with increase in Nd content while the Curie temperature behaves in the opposite way. The alloy x=0.08 exhibits a giant magnetostriction value (λ-λ) of −2187 ppm at a magnetic field of 12 kOe due to the anisotropy compensation between Sm3+ and Nd3+ ions.  相似文献   

19.
The magnetic properties of the Ca1−xMnxO systems in the range 0?x?1 have been studied by mean field theory and high-temperature series expansions (HTSEs). By using the first theory, we have evaluated the nearest neighbour and the next-neighbour super-exchange interaction J1(x) and J2(x) respectively, in the range 0.45?x?1. The corresponding classical exchange energy for magnetic structure is obtained for the Ca1−xMnxO systems. The HTSEs combined with the Padé approximants (PA) method is applied to the Ca1−xMnxO systems; we have obtained the magnetic phase diagrams (TN or TSG versus dilution x) in the range 0?x?1. The obtained theoretical results are in agreement with experimental ones obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) are deduced in the range 0?x?1.  相似文献   

20.
X-ray powder diffraction and magnetization measurements have been carried out on Rh2Mn1+xSn1−x (0≤x≤0.3) alloys. The alloys, which crystallize in the L21 structure, were found to exhibit ferromagnetic behavior. The lattice constant a at room temperature decreases with increasing x, whereas the Curie temperature TC decreases linearly. At 5 K the magnetic moment per formula unit first increases with increasing x and then saturates for x≥0.2. The experimental results are discussed in terms of the influence of the Mn-Mn exchange interactions between the Mn atoms on the Sn and Mn sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号