首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A direct immersion solid-phase microextraction coupled with gas chromatography-electron capture detection (SPME-GC-ECD) method was optimized and validated for the quantitative determination of 18 organochlorine pesticides in ground water. Ionic strength, stirring speed, adsorption and desorption time and pH were some of the parameters investigated in order to select the optimum conditions for SPME with a 50/30 DVB/CAR/PDMS fiber coating. The SPME-GC/ECD method showed good linear response below 10 ng L−1 with R2 values in the range of 0.9950–0.9997. The repeatability of the measurements were lower than 10%. Values of relative recoveries located within the acceptable range (80–120%). Limits of quantification (LOQ) from 4.5 × 10−3 to 1.5 ng L−1 were obtained. On average 8 organochlorines were found per sample, even so all the 18 organochlorines were quantified among them. Substances such as endrin ketone, γ-BHC and β-BHC were the pesticides determined in larger concentration (0.06–305 ng L−1), while methoxychlor and aldrin in smaller amounts (0.151–1.55 ng L−1). Measured levels of organochlorine pesticides were above the limits established by Brazilian regulations.  相似文献   

2.
A rapid and reliable method was developed and applied for the simultaneous determination of 17 organochlorine pesticides (OCPs) in propolis. After extraction with hexane and acetone (1:1, v/v), four sorbents (florisil, silica, graphitized carbon, and tandem graphitized carbon plus florisil) were assayed for the clean-up step. The elution solvents hexane and ethyl acetate (1:1, v/v), hexane and dichloromethane (3:7, v/v), and ethyl acetate and hexane (2:8, v/v) were studied. The results showed that the combination of the tandem graphitized carbon and florisil cartridge with the elution solvent of 6mL of ethyl acetate and hexane (2:8, v/v), which was capable of eliminating matrix interference and providing colorless eluates, was the most efficient clean-up procedure for propolis extracts when testing for OCPs. The analytical technique employed was gas chromatography with electron capture detection (GC–ECD). The correlation coefficients from linear regression for the analyzed concentrations (5∼100 μg/kg) were >0.9961. The limits of detection (LODs) varied between 0.8 μg/kg for 4,4′-DDE and 11.4 μg/kg for endosulfan II, and the limits of quantitation (LOQs) ranged from 2.6 to 38.1 μg/kg. The average recoveries varied between 62.6 and 109.6%. Relative standard deviations (RSD%) ranged from 0.8 to 9.4%. Sample analysis indicated that 4,4′-DDE was detected more often in propolis than other pesticides, such as β-HCH, δ-HCH and heptachlor. Figure GC-ECD chromatogram of a standard solution with 0.1 mg/L of OCPs  相似文献   

3.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

4.
This paper describes the extraction of 20 organochlorine pesticides (OCPs) from water samples using solid-phase microextraction (SPME). Three fused-silica fibers coated or bonded with polydimethylsiloxane (PDMS) of different film thicknesses (20-, 30-, and 100-μm) were evaluated. The extraction time, the effects of stirring and addition of NaCl to the aqueous sample, the linear range and the precision of this technique, and the effect of carryover were examined for 20 analytes and are presented here. A comparison with results using conventional liquid-liquid extraction demonstrate that the SPME technique is well suited as a fast screening technique for OCPs in water samples.  相似文献   

5.
A drop-based liquid phase microextraction and gas chromatographic-electron capture detection (GC-ECD) method was described for the determination of chlorobenzenes including chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene and 1,2,3-trichlorobenzene in 5 ml of water. The method used 2 microl of n-hexane as extraction solvent, 5 min extraction time, a stirring rate of 600 rpm and sample ionic strength of 3 M maintained with sodium chloride at 25 degrees C (ambient temperature). The limits of detection (LODs) ranged from 0.004 microg l(-1) (for 1,3-dichlorobenzene) to 0.008 microg l(-1) (for monochlorobenzene). The dynamic linear range for all investigated chlorobenzenes was 1-50 microg l(-1). Recoveries of chlorobenzenes from fortified distilled water are over 90% for three different fortification levels (5, 15 and 45 microg l(-1)) and relative standard deviations of the recoveries are below 6%. Analysis of fortified (5 microg l(-1)) real water samples revealed that matrices had no adverse effect on extraction efficiency of proposed method. The recovery of fortified real water samples was from 90 to 94% with relative standard deviations below 6%.  相似文献   

6.
建立了大米中12种有机氯农药气相色谱-电子捕获检测器检测方法.采用基质固相分散(Matrix Solid Phase Disperse, MSPD)技术进行样品前处理, 用气相色谱-电子捕获检测器进行快速定性定量分析.基质固相分散集提取、过滤、净化于一步完成, 避免了样品均化、转溶、乳化、浓缩造成的待测农药组分的损失, 大大提高了方法的准确度和精密度.12种有机氯农药的添加回收率在83%~103%之间,相对标准偏差为2.2%~19%.  相似文献   

7.
Zhao H  Jia Y  Ding M  Sun D  Zhao M 《色谱》2011,29(5):443-449
建立了多壁碳纳米管为吸附剂的固相萃取(SPE)净化、气相色谱-电子捕获检测(GC-ECD)测定蔬菜中6种有机氯和7种拟除虫菊酯农药的方法。采用双柱(HP-50和HP-1色谱柱)双检测器进行定性和定量分析。蔬菜样品采用乙腈提取,多壁碳纳米管SPE柱净化,正己烷溶解上样,丙酮-正己烷(7:3, v/v)洗脱,13种农药中有11种农药的添加回收率高于70%。将该净化方法用于荷兰黄瓜、卷心菜、红圣女果、奶油生菜、紫甘蓝、韭菜、大葱和洋葱等样品的净化,与弗罗里硅土SPE柱相比较,净化效果更好,表明多壁碳纳米管具有较强的吸附去除色素的能力,可以避免色素对测定的干扰。  相似文献   

8.
1.  An x-ray structure analysis has revealed substantial diferrences in the conformational states of 2,3-(4-benzoyl)benzo-15-crown-5 and benzo-15-crown-5 in the crystal phase, differences related to realization of a trans-gauche-gauche' conformation in one COCCOC fragment in the 2,3-(4-benzoyl)benzo-15-crown-5.
2.  In nonpolar solvents, an equilibrium of several structures is realized in both compounds, an equilibrium with the participations of trans-gauche-trans, trans-gauche-gauche and trans-gauche-gauche' conformations. In a polar medium, there are no indications of the trans-gauch-gauche' conformation.
3.  Upon complexation of the ligands with calcium thiocyanate in acetonitrile, there are spectral indications of complexes with differing stoichiometry, with a large contribution of the structure from trans-gauche-trans conformations.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 833–838, April, 1989.  相似文献   

9.
A fiber-in-tube microextraction protocol was developed and coupled with gas chromatography-electron capture detector (GC-ECD) for determination of trace hexachlorocyclohexanes (HCHs) in water samples. The developed technique was performed by immersing a PTFE fiber-packed and organic solvent-filled PTFE tube in the stirred aqueous solution. Extraction took place between the solvent permeated fibers and sample solution. The extract was then analyzed by GC-ECD. The effects of fiber quantity, extraction time, agitation, addition of salt and pH of sample solution were investigated in detail. Extraction of the analytes in 8 ml aqueous solution for 20 min yielded enrichment factors of 221-538. The limits of detection (S/N = 3) and the limits of quantitation (S/N = 8) were 2-12 ng l−1 and 6-32 ng l−1, respectively. The precision (R.S.D.s, n = 5) was 0.1% for retention time and 1.8-4.8% for peak height. The developed methodology was applied to the determination of trace HCHs in local river water samples.  相似文献   

10.
A rapid, sensitive, convenient, and highly quality-assured method is presented for the determination of 19 organochlorine pesticides (OCPs) in small samples (10 ml) of ground water. Samples are initially fortified with 2,4,5,6-tetrachloro-m-xylene (surrogate) and decachlorobiphenyl (retention time marker), then extracted with a 30-micron thickness polydimethylsiloxane solid-phase microextraction fiber. The analytes collected are thermally desorbed in a heated gas chromatographic inlet, separated using independent fused-silica capillary columns ("primary" and "confirmatory"), and detected using electron-capture detection. Two independent statistical procedures were used to evaluate the detection limits, which typically range between 10 and 40 ng l-1, for these analytes. Method performance was also evaluated using two additional protocols employing "performance evaluation" samples, in which authentic ground water samples were fortified to ca. 100 ng l-1 in each of at least six OCPs. The method satisfies additional strict criteria based on uniformity of fiber performance and minimal degradation of the thermally-sensitive analytes endrin and DDT.  相似文献   

11.
Headspace solid phase microextraction (HS-SPME) was optimized for the analysis of pesticides with gas chromatography electron capture detection (GC-ECD) and high-resolution mass spectrometry. Factors influencing the extraction efficiency such as fiber type, extraction mode and temperature, effect of ionic strength, stirring and extraction time were evaluated. The lowest pesticide concentrations that could be detected in spiked aliquots after HS-SPME–GC-ECD ranged from 0.0005 to 0.0032 μg L− 1. Consequently hexachlorobenzene, trans-chlordane, 4,4′-DDD and 4,4′-DDE were detected in water samples after HS-SPME at concentrations ranging from 2.4 to 61.4 μg L− 1 that are much higher than the 0.1 μg L− 1 maximum limit of individual organochlorine pesticides in drinking water set by the European Community Directive. The same samples were cleaned with ISOLUTE C18 SPE sorbent with an optimal acetone/n-hexane (1:1 v/v) mixture for the elution of analytes. No pesticides were detected after SPE clean-up and pre-concentration. Precision for both methods was satisfactory with relative standard deviations less than 20%. This work demonstrated the superiority of HS-SPME as a sample clean-up and pre-concentration technique for pesticides in water samples as well as the need to identify and control point sources of pesticides.  相似文献   

12.
A coupled technique, microwave-assisted headspace solid-phase microextraction (MA-HS-SPME), was investigated for one-step in situ sample pretreatment for organochlorine pesticides (OCPs) prior to gas chromatographic determination. The OCPs, aldrin, o,p'-DDE, p,p'-DDE, o,p'-DDT, p,p'-DDT, dieldrin, alpha-endosulfan, beta-endosulfan, endosulfan sulfate, endrin, delta-HCH, gamma-HCH, heptachlor, heptachlor epoxide, methoxychlor and trifluralin were collected by the proposed method and analyzed by gas chromatography with electron-capture detection (GC-ECD). To perform the MA-HS-SPME, six types of SPME fibers were examined and compared. The parameters affecting the efficiency in MA-HS-SPME process such as sampling time and temperature, microwave irradiation power, desorption temperature and time were studied to obtain the optimal conditions. The method was developed using spiked water samples such as field water and with 0.05% humic acid in a concentration range of 0.05-2.5 microg/l except endosulfan sulfate in 0.25-2.5 microg/l. The detection was linear over the studied concentration range with r2>0.9978. The detection limits varied from 0.002 to 0.070 microg/l based on S/N=3 and the relative standard deviations for repeatability were <15%. A certified reference sample of OCPs in aqueous solution was analyzed by the proposed method and compared with the conventional liquid-liquid extraction procedure. These results are in good agreement. The results indicate that the proposed method provides a very simple, fast, and solvent-free procedure to achieve sample pretreatment prior to the trace-level screening determination of organochloride pesticides by gas chromatography.  相似文献   

13.
A solid-phase microextraction (SPME) method combined with gas chromatography with nitrogen-phosphorous and electron capture detection for the analysis of the pesticides terbumeton, metribuzine, isomethiozine, pyridafenthion and triadimenol in river water has been developed. For this purpose, polyacrylate and polydimethylsiloxane coated fibres have been utilised and the factors affecting throughput, precision and accuracy of the SPME method have been investigated and optimised. These factors include: matrix influence, adsorption time, pH, salt effect, desorption time, temperature and also the lapse of time between sampling and injection. The performed analytical procedure showed detectability ranging from 2.0 ng l(-1) to 3.0 microg l(-1) and precision from 1.9 to 27.7% (as relative standard deviation) depending on the pesticide, the fibre and the detector used. The results demonstrate the suitability of the SPME method to analyse these non-volatile pesticides in river water.  相似文献   

14.
We developed a simple and efficient headspace liquid-phase microextraction (LPME) technique named dynamic hook-type liquid-phase microextraction (DHT-LPME) and used it in combination with gas chromatography-mass spectrometry (GC-MS) and an electron capture detector (ECD). Aqueous specimens of organochlorine pesticides (OCPs) were used as model compounds to demonstrate the effectiveness of the technique. In the present study, the calibration curves were linear over at least 2 orders of magnitude with R2 values of 0.997. The method detection limits (MDLs) varied from 2 to 44.0 ng L−1. The precision of DHT-LPME ranged from 6.5 to 14.4%. The relative recoveries of OCPs in rainwater were more than 84.2%. Enrichment factors (EF) in the range 275-1127 were obtained using DHT-LPME.  相似文献   

15.
Trace residues of organochlorine pesticides (OCPs) in estuarine surface sediments were investigated at three protected wetlands in southern Taiwan using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) and gas chromatography-electron capture detector (GC-ECD). This study facilitates the development of new strategies for investigating OCPs, particularly at background levels. Linear relationships were obtained between total OCP concentrations (∑OCP), as analyzed by HRGC/HRMS, and the sediment's total organic carbon (TOC) and water content. It contrasted with the results acquired by GC-ECD, where no significant relationship was found. GC-ECD is a rugged option for daily routine practice, particularly in cases of patterns yielded by GC-ECD is clear; the HRGC/HRMS method provides more reliable qualitative and quantitative capabilities and is highly recommended for studying the fate of OCPs and carrying out risk assessments. The average ∑OCP of these three wetlands by HRGC/HRMS was found in a range of 0.214 to 1.049 ng/g dry weight. The highest OCP level might be attributed to associated irrigation systems receiving massive discharges of domestic sewage from an urban area upstream of the wetland. The ratio of dichlorodiphenyltrichloroethane (DDT) to its metabolites indicated that the DDT residue in these areas was from aged input. According to sediment quality guidelines, adverse ecotoxicological effects of OCPs upon sediments were not expected in these protected wetlands.  相似文献   

16.
NMR, IR and MS were used for identification of major products of radiolysis of benzo-15-crown-5 in chloroform. The crown ether exhibits high affinity towards inorganic products of radiolysis of chloroform resulting in the formation of complexes.  相似文献   

17.
The study on the performance of polyaniline as a fiber coating for solid-phase microextraction (SPME) purposes has been reported. Polyaniline coatings were directly electrodeposited on the surface of a stainless steel wire and applied for the extraction of some organochlorine pesticides (OCPs) from water samples. Analyses were performed using GC-electron capture detection (GC-ECD). The results obtained show that polyaniline fiber coating is suitable for the successful extraction of organochlorine compounds. This behavior is most probably due to the porous surface structure of polyaniline film, which provides large surface areas and allowed for high extraction efficiency. Experimental parameters such as adsorption and desorption conditions were studied and optimized. The optimized method has an acceptable linearity, with a concentration range of 1-5000 ng/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 17%, respectively. High environmental resistance and lower cost are among the advantages of polyaniline fibers over commercially available SPME fibers. The developed method was applied to the analysis of real water samples from Yangtse River and Tianmu Lake.  相似文献   

18.
Summary As a consequence of the high toxicity of organochlorine pesticides their presence in water for human consumption is limited by legislation. To determine these compounds at trace levels, an extraction procedure and a highly sensitive analytical technique is necessary. In this work we have used laminar disks for the solid-phase extraction of 21 organochlorine pesticides from water. The analytical technique selected is gas chromatography with electron-capture detection. A solid-phase extraction procedure is proposed, and some problems has been encountered. Low recovery of some pesticides has been obtained, because of their adsorption by the walls of containers. To prevent this adsorption, addition of 20% methanol before the sampling step is proposed. Adsorption of pesticides by the organic matter present in water samples was also observed. Pesticides can be adsorbed by the membrane filters usually used to remove suspended particulate matter from water samples. Different kinds of filters have been tested, and the occurrence of the problem has been confirmed. The use of laminar disks in this work has overcome this problem.  相似文献   

19.
Khajeh M  Yamini Y  Hassan J 《Talanta》2006,69(5):1088-1094
In the present work, a rapid method for the extraction and determination of chlorobenzenes (CBs) such as monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene in water samples using the headspace solvent microextraction (HSME) and gas chromatography/electron capture detector (ECD) has been described. A microdrop of the dodecane containing monobromobenzene (internal standard) was used as extracting solvent in this investigation. The analytes were extracted by suspending a 2.5 μl extraction drop directly from the tip of a microsyringe fixed above an extraction vial with a septum in a way that the needle passed through the septum and the needle tip appeared above the surface of the solution. After the extraction was finished, the drop was retracted back into the needle and injected directly into a GC column. Optimization of experimental conditions such as nature of the extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, the ionic strength and extraction time were investigated. The optimized conditions were as follows: dodecane as the extracting solvent, the extraction temperature, 45 °C; the sodium chloride concentration, 2 M; the extraction time, 5.0 min; the stirring rate, 500 rpm; the drop volume, 2.5 μl; the sample volume, 7 ml; the microsyringe needle temperature, 0.0 °C. The limit of detection (LOD) ranged from 0.1 μg/l (for 1,3-dichlorobenzene) to 3.0 μg/l (for 1,4-dichlorobenzene) and linear range of 0.5–3.0 μg/l for 1,2-dichlorobenzene, 1,3-dichlorobenzene and from 5.0 to 20.0 μg/l for monochlorobenzene and from 5.0 to 30 μg/l for 1,4-dichlorobenzene. The relative standard deviations (R.S.D.) for most of CBs at the 5 μg/l level were below 10%. The optimized procedure was successfully applied to the extraction and determination of CBs in different water samples.  相似文献   

20.
A modified headspace liquid-phase microextraction (HS-LPME) method was studied for the extraction of chlorophenols (CPs) from aqueous samples with complicated matrices, before gas chromatographic (GC) analysis with electron capture detection (ECD). Microwave heating was applied to accelerate the evaporation of CPs into the headspace, and an external-cooling system was used to control the sampling temperature. Conditions influencing extraction efficiency, such as the LPME-solvent, the sampling position of LPME, the sampling temperature, microwave power, and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly optimized. Experimental results indicated that the extraction of CPs from a 10mL aquatic sample (pH 1.0) was achieved with the best efficiency through the use of 1-octanol as solvent, microwave irradiation of 167W, and sampling at 45 degrees C for 10min. The detections were linear in the concentration of 5.0-100microg/L for 2,4-dichlorophenol (2,4-DCP), and 0.5-10microg/L for 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Detection limits were found to be 0.7, 0.04, 0.07, and 0.08microg/L for 2,4-DCP, 2,4,6-TCP, 2,3,4,6-TeCP, and PCP, respectively. A landfill leachate sample was analyzed with recovery between 83 and 102%. The present method was proven to serve as a simple, sensitive, and rapid procedure for CP analysis in an aqueous sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号