首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single machine batch scheduling problem to minimize the weighted number of late jobs is studied. In this problem,n jobs have to be processed on a single machine. Each job has a processing time, a due date and a weight. Jobs may be combined to form batches containing contiguously scheduled jobs. For each batch, a constant set-up time is needed before the first job of this batch is processed. The completion time of each job in the batch coincides with the completion time of the last job in this batch. A job is late if it is completed after its due date. A schedule specifies the sequence of jobs and the size of each batch, i.e. the number of jobs it contains. The objective is to find a schedule which minimizes the weighted number of late jobs. This problem isNP-hard even if all due dates are equal. For the general case, we present a dynamic programming algorithm which solves the problem with equal weights inO(n 3) time. We formulate a certain scaled problem and show that our dynamic programming algorithm applied to this scaled problem provides a fully polynomial approximation scheme for the original problem. Each algorithm of this scheme has a time requirement ofO(n 3/ +n 3 logn). A side result is anO(n logn) algorithm for the problem of minimizing the maximum weight of late jobs.Supported by INTAS Project 93-257.  相似文献   

2.
We consider the problem of scheduling n jobs on an unbounded batching machine that can process any number of jobs belonging to the same family simultaneously in the same batch. All jobs in the same batch complete at the same time. Jobs belonging to different families cannot be processed in the same batch, and setup times are required to switch between batches that process jobs from different families. For a fixed number of families m, we present a generic forward dynamic programming algorithm that solves the problem of minimizing an arbitrary regular cost function in pseudopolynomial time. We also present a polynomial-time backward dynamic programming algorithm with time complexity O (mn(n/m+1) m ) for minimizing any additive regular minsum objective function and any incremental regular minmax objective function. The effectiveness of our dynamic programming algorithm is shown by computational experiments based on the scheduling of the heat-treating process in a steel manufacturing plant.  相似文献   

3.
In this paper we consider the problem of minimizing number of tardy jobs on a single batch processing machine. The batch processing machine is capable of processing up to B jobs simultaneously as a batch. We are given a set of n jobs which can be partitioned into m incompatible families such that the processing times of all jobs belonging to the same family are equal and jobs of different families cannot be processed together. We show that this problem is NP-hard and present a dynamic programming algorithm which has polynomial time complexity when the number of job families and the batch machine capacity are fixed. We also show that when the jobs of a family have a common due date the problem can be solved by a pseudo-polynomial time procedure.  相似文献   

4.
We give a direct combinatorial O(n3logn) algorithm for minimizing the number of late jobs on a single machine when jobs have release times and preemptions are allowed. Our algorithm improves the earlier O(n5) and O(n4) dynamic programming algorithms for this problem.  相似文献   

5.
We consider a problem of scheduling n jobs on two uniform parallel machines. For each job we are given its release date when the job becomes available for processing. All jobs have equal processing requirements. Preemptions are allowed. The objective is to find a schedule minimizing total completion time. We suggest an O(n3) algorithm to solve this problem.  相似文献   

6.
Consider a set of n unit time jobs, each one having a release date, a due date, both nonnegative integers, and a weight, a positive real number. Given a set of m parallel machines, we describe an algorithm for finding schedules with minimum weighted number of tardy jobs. The complexity of the proposed algorithm is O(n2\frac(1+logm)m)O(n^{2}\frac{(1+\log m)}{m}) . The best previous algorithm for this problem has complexity O(mn 3) and employs network flow techniques. Our method is based on a characterization for schedules of this type and employs graph theoretic tools.  相似文献   

7.
LetP={v 1,...,v n } be a set ofn jobs to be executed on a set ofm identical machines. In many instances of scheduling problems, if a jobv i has to be executed before the jobv j and both jobs are to be executed on different machines, some sort of information exchange has to take place between the machines executing them. The time it takes for this exchange of information is called a communication delay.In this paper we give anO(n) algorithm to find an optimal scheduling with communication delays when the number of machines is not limited and the precedence constraints on the jobs form a tree.  相似文献   

8.
A linear time approximation algorithm for multiprocessor scheduling   总被引:1,自引:0,他引:1  
Givenn jobs andm identical processors anO(n) approximation algorithm is presented which tries to determine a nonpreemptive schedule with minimum finish time. Ifr is the number of jobs placed onto the processor with maximum finish time, then the worst case ratio of the new algorithm's finish time to the optimal solution is shown to be less thanrm/(rmm+1). Extensive empirical results show that the new algorithm is competitive with the LPT algorithm in terms of quality of solution and faster in terms of computing time.  相似文献   

9.
In this paper a one-machine scheduling model is analyzed wheren different jobs are classified intoK groups depending on which additional resource they require. The change-over time from one job to another consists of the removal time or of the set-up time of the two jobs. It is sequence-dependent in the sense that the change-over time is determined by whether or not the two jobs belong to the same group. The objective is to minimize the makespan. This problem can be modeled as an asymmetric Traveling Salesman Problem (TSP) with a specially structured distance matrix. For this problem we give a polynomial time solution algorithm that runs in O(n logn) time. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

10.
In this note we consider two problems: (1) Schedulingn jobs non-preemptively on a single machine to minimize total weighted earliness and tardiness (WET). (2) Schedulingn jobs nonpreemptively on two parallel identical processors to minimize weighted mean flow time (WMFT). A new approach for these problems is presented. The approach is based on a problem of maximizing a submodular set function. Heuristic algorithm for the problems also is presented.  相似文献   

11.
We give a new and efficient approximation algorithm for scheduling precedence-constrained jobs on machines with different speeds. The problem is as follows. We are given n jobs to be scheduled on a set of m machines. Jobs have processing times and machines have speeds. It takes pj/si units of time for machine i with speed si to process job j with processing requirement pj. Precedence constraints between jobs are given in the form of a partial order. If j k, processing of job k cannot start until job j's execution is completed. The objective is to find a non-preemptive schedule to minimize the makespan of the schedule. Chudak and Shmoys (1997, “Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),” pp. 581–590) gave an algorithm with an approximation ratio of O(log m), significantly improving the earlier ratio of due to Jaffe (1980, Theoret. Comput. Sci.26, 1–17). Their algorithm is based on solving a linear programming relaxation. Building on some of their ideas, we present a combinatorial algorithm that achieves a similar approximation ratio but runs in O(n3) time. Our algorithm is based on a new and simple lower bound which we believe is of independent interest.  相似文献   

12.
A polynomial time algorithm was given by Fiala for the nonpreemptivem-processor open shop problem whenever the sum of processing times for one processor is large enough with respect to the maximal processing time. Here a special case where all processing times are from a bounded cardinality set of nonnegative integers is studied. For such a situation we give anO(nm) algorithm while the algorithm of Fiala works inO(n 2 m 3) wheren is the number of jobs.  相似文献   

13.
The paper deals with the scheduling of a robotic cell in which jobs are processed on two tandem machines. The job transportation between the machines is done by a transportation robot. The robotic cell has limitations on the intermediate space between the machines for storing the work-in-process. What complicates the scheduling problem is that the loading/unloading operation times are non-negligible. Given the total number of operationsn, an optimalO(n logn)-time algorithm is proposed together with the proof of optimality.  相似文献   

14.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem.  相似文献   

15.
We apply a tabu search method to a scheduling problem of a company producing cables for cars: the task is to determine on what machines and in which order the cable jobs should be produced in order to save production costs. First, the problem is modeled as a combinatorial optimization problem. We then employ a tabu search algorithm as an approach to solve the specific problem of the company, adapt various intensification as well as diversification strategies within the algorithm, and demonstrate how these different implementations improve the results. Moreover, we show how the computational cost in each iteration of the algorithm can be reduced drastically from O(n 3) (naive implementation) to O(n) (smart implementation) by exploiting the specific structure of the problem (n refers to the number of cable orders).  相似文献   

16.
Single-machine scheduling to minimize earliness and number of tardy jobs   总被引:1,自引:0,他引:1  
This paper considers the problem of assigning a common due-date to a set of simultaneously available jobs and sequencing them on a single machine. The objective is to determine the optimal combination of the common due-date and job sequence that minimizes a cost function based on the assigned due-date, job earliness values, and number of tardy jobs. It is shown that the optimal due-date coincides with one of the job completion times. Conditions are derived to determine the optimal number of nontardy jobs. It is also shown that the optimal job sequence is one in which the nontardy jobs are arranged in nonincreasing order of processing times. An efficient algorithm of O(n logn) time complexity to find the optimal solution is presented and an illustrative example is provided. Finally, several extensions of the model are discussed.This research was supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant OPG0036424. The authors are thankful to two anonymous referees for their constructive comments.  相似文献   

17.
We consider the generalization of the classical P||Cmax problem (assign n jobs to m identical parallel processors by minimizing the makespan) arising when the number of jobs that can be assigned to each processor cannot exceed a given integer k. The problem is strongly NP-hard for any fixed k > 2. We briefly survey lower and upper bounds from the literature. We introduce greedy heuristics, local search and a scatter search approach. The effectiveness of these approaches is evaluated through extensive computational comparison with a depth-first branch-and-bound algorithm that includes new lower bounds and dominance criteria.  相似文献   

18.
We study the problem of maximizing the weighted number of just-in-time (JIT) jobs in a flow-shop scheduling system under four different scenarios. The first scenario is where the flow-shop includes only two machines and all the jobs have the same gain for being completed JIT. For this scenario, we provide an O(n3) time optimization algorithm which is faster than the best known algorithm in the literature. The second scenario is where the job processing times are machine-independent. For this scenario, the scheduling system is commonly referred to as a proportionate flow-shop. We show that in this case, the problem of maximizing the weighted number of JIT jobs is NP-hard in the ordinary sense for any arbitrary number of machines. Moreover, we provide a fully polynomial time approximation scheme (FPTAS) for its solution and a polynomial time algorithm to solve the special case for which all the jobs have the same gain for being completed JIT. The third scenario is where a set of identical jobs is to be produced for different customers. For this scenario, we provide an O(n3) time optimization algorithm which is independent of the number of machines. We also show that the time complexity can be reduced to O(n log n) if all the jobs have the same gain for being completed JIT. In the last scenario, we study the JIT scheduling problem on m machines with a no-wait restriction and provide an O(mn2) time optimization algorithm.  相似文献   

19.
This paper gives an O(nnlog3n) time algorithm for the chance-constrained sequencing problem on a single machine, where n is the number of jobs and the objective is to minimize the number of jobs which are early with probability not smaller than α (a given constant) against the common due time d.  相似文献   

20.
We consider a single machine scheduling problem with total tardiness criteria and controllable job-processing times specified by a convex resource consumption function. The objective is to have the total tardiness limited into a given range, and minimize the total resource consumption. A polynomial time algorithm of O(n 2) is presented for the special case where jobs have a common due date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号