首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of quaternary ammonium derivatives has been used to synthesize cationic CdSe/ZnS quantum dots with exceptional stability in water as well as in biological media.  相似文献   

2.
Hydrophobic lead sulfide quantum dots (PbS/OA) synthesized in the presence of oleic acid were transferred from nonpolar organic solvents to polar solvents such as alcohols and water by a simple ligand exchange with poly(acrylic acid) (PAA). Ligand exchange took place rapidly at room temperature When a colloidal solution of PbS/OA in tetrahydrofuran (THF) was treated with excess PAA, the PbS/PAA nanocrystals that formed were insoluble in hexane and toluene but could be dissolved in methanol or water, where they formed colloidal solutions that were stable for months. Ligand exchange was accompanied by a small blue shift in the band-edge absorption, consistent with a small reduction in particle size. While there was a decrease in quantum yield associated with ligand exchange and transfer to polar solvents, as is commonly found for colloidal quantum dots, the quantum yields determined were impressively high: PbS/OA in toluene (82%) and in THF (58%); PbS/PAA in THF (42%) and in water (24%). The quantum yields for the PbS/PAA solutions decreased over time as the solutions were allowed to age in the presence of air.  相似文献   

3.
Poly(dimethylaminoethyl methacrylate N-oxide) (poly(DMAEMNO)) was prepared by oxidation of poly(dimethylaminoethyl methacrylate) with hydrogen peroxide in methanol. From thermogravimetric and IR spectroscopic investigations Cope elimination of amine oxide group in poly(DMAENO) was found to occur at 120–150°C. The postpolymerization of partially pyrolyzed polymer carrying vinyl ester group as pendant was performed with azobisisobutyronitrile at 60°C in methanol to give cross-linked polymer that was found to form hydrogel. Poly(DMAEMNO) gave metal–polymer complexes with CuCl2, ZnCl2, and CoCl2. Cobalt–polymer complex had a constitution of 1:2 of metal ion to amine oxide group, while copper– and zinc–polymer complexes seemed to have structures of 1:1 and 1:2 of metal ion to amine oxide group. Furthermore, polymer complexes of poly(DMAEMNO) with poly(methacrylic acid) and poly(acrylic acid) were found to be formed by mixing aqueous solutions of both polymers and also by radical polymerization of the acid monomers in the presence of poly(DMAEMNO). From elemental analysis, thermogravimetric investigation, and measurement of turbidity it was concluded that the resulting polymer–polymer complexes contained more than one acid monomer unit per one N-oxide unit.  相似文献   

4.
1H-NMR spectroscopy was used to establish the chain microstructure and conformation produced by the quaternization reaction of syndiotactic poly[2-(dimethylamino)ethyl methacrylate], a polymer with tertiary amino groups in the side chains. A chain microstructure with mini blocks of modified units was found by analyzing the N+CH3 signal that was proved to be split in accordance with the composition triads. The macromolecular backbone changes its form by quaternization, from a close to an expanded coil, was confirmed by light scattering measurements and NOE spectra modifications. The two linked processes, the block formation and chain expansion can be the key in developing a reaction mechanism explaining both positive and negative deviations from a second-order kinetic model.  相似文献   

5.
The full-atomic molecular dynamics approach has been employed to study the structure and composition of ligand shells of colloidal cadmium selenide quantum dots produced by high-temperature colloidal synthesis in a trioctylphosphine–trioctylphosphine oxide mixture. The influence of solvents (chloroform and methanol) on the composition of the shells has been investigated. The number of ligand molecules optimal for complete covering the surface of a considered particle without its deformation has been found. The fraction of passivated surface ions has been calculated.  相似文献   

6.
Using colloidal solutions of ZnS-shell indium phosphide quantum dots with two average sizes of 2.1 and 3.0 nm and a size distribution variance of 10%, it has been shown that the luminescence and the luminescence excitation spectra of the colloidal quantum dots substantially depend on the wavelength of exciting light and the detection wavelength, respectively, with both the relationships being nonlinear in character, which may indicate the bimodal type of the size distribution function. Similar measurements for CdSe colloidal quantum dots with an average particle size of dav = 2.5 nm and a variance of 6% have shown that the effect of dependence of the luminescence peak position on the excitation wavelength is manifested to a much lesser extent.  相似文献   

7.
Hydrodynamic behavior of progressively quaternized poly(dimethylaminoethyl methacrylate) (PDMAEM) in dilute and semi-dilute salt–free aqueous solutions as a function of molar mass and charge density, which varied from 5 up to 100 mol%, was studied. The role of long range electrostatic interactions on the viscosity and on the position and value of the reduced viscosity corresponding to the peak, ηred,p, as a function of the charge density of polycation has been evaluated. The overlap concentration of polyelectrolytes, c, has been evaluated as the inverse of the intrinsic viscosity determined by fitting the viscometric results on Rao equation. The values of c have been discussed as a function of polyion molar mass and charge density. The c values calculated in the frame of Odijk model for polyelectrolytes having quaternization degree ?50 were lower but comparable with those determined by viscometry, for the same molar mass.  相似文献   

8.
An aliphatic thiol ligand of CuInS(2)/ZnS core/shell quantum dots is replaced with a hydroxyl-terminated thiol ligand by utilizing 'on-off state' of ligands during growth stage of the quantum dots. After the ligand-exchange, negligible differences were observed on both photoluminescence spectrum and luminescent quantum efficiency. The reason for the high retention of luminescent efficiency comes from no local agglomeration and no surface deterioration of QDs. It is also observed that 70% of initial ligands are exchanged by the replacing ligand, determined by FT-IR and (1)H NMR. The proposed method provides the quantum dots with an excellent dispersibility in polar solvents, supported by identical luminescence decay characteristics of the QDs.  相似文献   

9.
Synthesis of CdTe colloidal quantum dots (QDs) in water   总被引:1,自引:0,他引:1  
The comparison of growth processes and fluorescent properties of CdTe semiconductor quantum dots (QDs) that are synthesized in water with different modifiers are discussed in this paper. The samples are characterized through ultraviolet-visible spectra (UV-Vis), photoluminescence spectra (PL) and zeta potential. The results show that when the reaction time is prolonged for the same modifier, the ultraviolet absorption peak and fluorescent emission peak present obvious red shifts and the diameters of the QDs continuously increase. With the same reaction time but different modifiers, QDs with different diameters can be gained. The average full width at half maximum of the photoluminescence spectra is about 50 nm which shows that the monodispersity is quite good. Under the best reaction conditions, the highest quantum yield (QY) can be attained by using thioglycollic acid (TGA) as modifier when the reaction time is 240 min. The zeta potential is influenced by the modifier and pH. __________ Translated from Journal of Shanghai Jiao Tong University, 2007, 41(10): 1690–1694 [译自: 上海交通大学学报]  相似文献   

10.
Poly(2-methoxyethyl acrylate) (PMEA) exhibits excellent blood compatibility. To understand why such a surface functionality exists, the surface of PMEA should be characterized in detail, structurally and dynamically, under not only ambient conditions, but also in water. However, a thin film of PMEA supported on a solid substrate can be easily broken, namely it is dewetted. Our strategy to overcome this difficulty is to mix PMEA with poly(methyl methacrylate) (PMMA). Differential scanning calorimetry and cloud point measurements revealed that the PMEA/PMMA blend has a phase diagram with a lower critical solution temperature. The blend surface was also characterized by X-ray photoelectron spectroscopy in conjunction with microscopic observations. Although PMEA is preferentially segregated over PMMA at the blend surface due to its lower surface free energy, the extent of segregation in the as-prepared films was not sufficient to cover the surface. Annealing the blend film at an appropriate temperature, higher than the glass transition temperature and lower than the phase-separation temperature of the blend, enabled us to prepare a stable and flat surface that was perfectly covered with PMEA.  相似文献   

11.
12.
Surface structure relaxations caused by temperature changes at the free surface of poly(methyl methacrylate) were studied using IR-visible sum-frequency generation (SFG). A polarization-rotating technique was introduced to enhance the sensitivity of SFG for monitoring the surface structure relaxations during a cooling process. A new surface structure relaxation was observed at 67 degrees C. This temperature does not match any known structure relaxation temperatures for the bulk and is 40 degrees C below the bulk glass transition temperature. As expected for a free-surface phenomenon, the surface relaxation temperature was found to be independent of film thickness in the range of 0.1-0.5 microm.  相似文献   

13.
Hydrophobic Mn-doped ZnS quantum dots (Mn:ZnS d-dots) were made to be water soluble by coating a monolayer of mercaptopropionic acid (MPA). It is found that the PL efficiency of Mn:ZnS d-dots with various shell thicknesses were all improved after thiol (MPA) ligand exchange. We attribute their PL enhancement to the effective surface passivation induced by the thiol ligand and significantly decrease of holes transfer from d-dots to ligands. The PL QY of as-synthesized thiol-coated d-dots can reach as high as 50%. These efficient, stable, and water soluble d-dots are confirmed to be suitable for biomedical applications.  相似文献   

14.
It has been shown that the precursors (long-chain amines and alkanethiols) used in liquid-phase colloidal synthesis of InP@ZnS quantum dots exert a significant influence on their spectral and luminescent properties. It has been found that dodecylamine and 1-dodecanethiol facilitate obtaining the particles with a narrow luminescence band and a low quantum yield, whereas oleylamine, 1-octanethiol, and 1,6-hexanedithiol stimulate the formation of the quantum dots with broad and intense luminescence. Conditions have been found under which the narrowing of the emission band to 46.3 nm becomes possible.  相似文献   

15.
Copolymers of methyl methacrylate (MMA) with 2,3,5,6‐tetrafluorophenyl methacrylate (TFPMA), pentafluorophenyl methacrylate (PFPMA), and 4‐trifluoromethyl‐2,3,5,6‐tetrafluorophenyl methacrylate (TFMPMA) were investigated. All the three systems showed a random copolymerization character. The composition, glass transition temperature (Tg), and refractive index of the copolymers obtained were studied. Tgs of TFPMA/MMA and PFPMA/MMA copolymers were found to deviate positively from the Gordon–Taylor equation. However, Tgs of TFMPMA/MMA copolymers were well fit with the Gordon–Taylor equation. These results indicated the existence of interaction between MMA and either TFPMA or PFPMA units in copolymers. This interaction resulted in the enhancement of the Tg of MMA polymers through the copolymerization with TFPMA and PFPMA. The refractive index and the light transmittance of copolymers were close to those of PMMA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.  相似文献   

17.
The thermal stability of poly(methyl methacrylate) (PMMA) photopolymerised using colloidal cadmium sulphide as the photoinitiator was studied by thermogravimetry (TG) and differential TG (DTG).The thermal stability of the CdS initiated PMMA was greater than that of conventional radically polymerised PMMA and approached that of anionically prepared PMMA. The DTG curve of the CdS initiated PMMA was a composite of four peaks, three of which correspond to the three peaks observed in the DTG curve of standard radically prepared PMMA. It is suggested that the additional peak arises from a new mode of depolymerisation initiation, that is, from chain end unsaturation introduced into the polymer chain during polymerisation initiation with the colloidal CdS.  相似文献   

18.
The review discusses modern approaches to the synthesis of semiconductor colloidal quantum dots and hybrid nanosystems represented by conjugates of quantum dots and organic ligands. The mechanisms of photoinduced processes taking place in systems of this kind are considered in detail. Data on chemoand photoconvertible hybrid nanosystems are summarized.  相似文献   

19.
We report a new class of derivatized 4,4'-bipyridinium ligands for use in synthesizing highly fluorescent, extremely stable, water-soluble CdSe and CdTe quantum dots (QDs) for bioconjugation. We employed an evaporation-condensation technique, also known as solvated metal atom dispersion (SMAD), followed by a digestive ripening procedure. This method has been used to synthesize both metal nanoparticles and semiconductors in the gram scale with several stabilizing ligands in various solvents. The SMAD technique comprised evaporation condensation and stabilization of CdSe or CdTe in tetrahydrofuran. The as-prepared product was then digestively ripened in both water and dimethyl formamide, leading to narrowing of the particle size distributions. The ligands were synthesized by nucleophilic substitution (S(N)2) reactions using 4,4'-bipyridine as a nucleophile. Confocal microscopy images revealed the orange color of the nanocrystalline QDs with diameters of ~5 nm. The size has been confirmed by using transmission electron microscopy. As a part of our strategy, 85% of the 4,4'-bipyridinium salt was synthesized as propionic acid derivative and used to both stabilize the QDs in water and label basic amino acids and different biomarkers utilizing the carboxylic acid functional group. Fifteen percent of the 4,4'-bipyridinium salt was synthesized as N-propyl maleimide and used as a second ligand to label any protein containing the amino acid cysteine by means of a 1,4-Michael addition.  相似文献   

20.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号