首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel saccharide sensor based on the covalent interaction between the boronic acid and saccharides was developed. Poly (aminophenylboronic acid) (PABA) was prepared by electropolymerizing 3-aminophenylboronic acid on gold electrode surface in acidic solution. The boronic acid group of the PABA film can form covalent-bond with different saccharides, which can change the dielectric characteristics of the PABA film, and the change of the dielectric characteristic was saccharides concentration dependent. Four kinds of saccharides could be detected by using electrochemical impedance spectroscopy. Good linear relationship and high sensitivity were obtained by this method.  相似文献   

2.
Gold nanoparticles were deposited onto 2-mercaptoethylamine (MEA)-assembled planar gold thin film to construct gold nanoparticles modified electrode by virtue of a solution-based self-assembly strategy. Subsequently, 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers were constructed on the as-prepared gold nanoparticles modified electrode. The resulted multilayer nanostructures were investigated by electrochemical surface plasmon resonance (EC-SPR) and atomic force microscopy (AFM) with primary emphasis upon the effect of the gold nanoparticles on the MPA/CuHCF multilayers growth and their surface morphology. Compared with the multilayer system on a planar gold electrode, the different electrochemical and optical properties might result from higher curvature effect and extraordinary surface-to-volume ratio characteristic of gold nanoparticles and the nanoparticle-selective growth of CuHCF. A dendrimer-like assembly process was proposed to explain the experiment results. This new motif of multilayer on the gold nanoparticles modified electrode was different from that of on a planar gold electrode, indicating a potential application of EC-SPR technique in the study of nanocomposite materials.  相似文献   

3.
The layer‐by‐layer (LbL) self‐assembly has been used to fabricate polymer thin films on any solid substrates. The multilayer polymer thin films are constructed by alternating adsorption of anionic and cationic polymers. Polyelectrolyte multilayer ultrathin films containing anionic poly[2‐(thiophen‐3‐yl)ethyl methacrylate‐co‐methacrylic acid]; P(TEM‐co‐MA) and cationic poly[4‐(9H‐carbazol‐9‐yl)‐N‐butyl‐4‐vinyl pyridium bromide]; P4VPCBZ, were fabricated. The growth of multilayer ultrathin films was followed by UV–Vis absorption spectrophotometer and surface plasmon resonance spectroscopy (SPR). The deposition of P(TEM‐co‐MA)/P4VPCBZ as multilayer self‐assembled ultrathin films regularly grow which showed linear growth of absorbance and thickness with increasing the number of layer pair. Cross‐linking of the layers was verified by cyclic voltammetry (CV), UV–Vis spectrophotometry and electrochemical surface plasmon resonance (EC‐SPR) spectroscopy with good electro‐copolymerizability. This was verified by spectroelectrochemistry. The SPR angular‐reflectivity measurement resulted in shifts to a higher reflectivity according to the change in the dielectric constant of the electropolymerized film. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A novel saccharide sensor that shows a distinct color change resembling a "traffic signal" was developed. By copolymerizing a boronic acid monomer and an amine monomer on a glass plate, a boronic acid-containing thin film was obtained. After adsorbing anionic blue and yellow dyes, the thin film was immersed in aqueous saccharide solutions containing a cationic red dye. As saccharide concentration increased, the thin film changed its color from green to red via yellow. Origin of the distinct color change was attributed to a stepwise release and binding of dyes.  相似文献   

5.
The polymer-on-polymer stamping technique was used to template patterned TiO2 onto polymer thin films. Polystyrene-b-polyvinyl pyridine diblock copolymer (PS-b-PVP) was stamped on a layer-by-layer assembled thin film of poly(allylamine hydrochloride) and poly(acrylic acid). After rinsing the surface with a good solvent for the block copolymer, an adsorbed PS-b-PVP monolayer remained on the polyelectrolyte film, resulting in a pattern of alternating hydrophobic and carboxylic acid containing hydrophilic regions. The surface was used as a template for the selective deposition of TiO2 on the multilayer surface, using an acid-catalyzed hydrolysis of(NH4)2TiF6. Using this novel approach, we have successfully demonstrated the patterning of TiO2 film on a polyelectrolyte multilayer. Finally, nanoscale features consisting of 200 nm lines alternating with a 350 nm period was accomplished. This paper represents the first such attempt to create an all-polymer nonlithographic template for the directed deposition of TiO2 or related metal oxides; this technique, which utilizes the versatile polyelectrolyte multilayer process, enables the construction of complex polymer-inorganic microstructures suitable for electrooptical and photonic applications.  相似文献   

6.
Electroactive multilayer film of myoglobin (Mb)-, chitosan (CS)-, and poly(dimethyldiallylammonium chloride) (PDDA)-wrapped multi-wall carbon nanotubes (MWNTs) is fabricated on a gold electrode via layer-by-layer (LBL) technique. The assembled multilayer films is characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). UV-vis spectroscopy showed that Mb in the films retained its near-native structure. The stable multilayerfilm-modified gold electrodes showed good electroactivity in protein-free buffer solution, which is originated from protein heme Fe(III)/Fe(II) redox couple. The modified electrode exhibited good electrocatalytic property toward reduction of H2O2 and trichloroacetic acid, indicating the potential application as amperometric biosensor. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 11, pp. 1366–1376. The text was submitted by the authors in English.  相似文献   

7.
A CE/biosensor for measuring ascorbic acid was developed by coupling a polyaniline optical sensor and capillary electrophoresis (CE). The capillary column was partially modified with a thin film of polyaniline redox sensitive material. Ascorbic acid was detected by monitoring the changes in optical absorbance occurring to the polyaniline film upon the reduction reaction. The sensor response (change in optical absorbance at 650 nm) is proportional to the concentration of ascorbic acid over a range of 2.5-250 mg/L and the response range has shown a clear dependence on the characteristics of the polymerized film. High specificity and sensitivity of the present method, low sample consumption, short times of response (ca. 2 min) and the reproducibility of the results demonstrate that the CE/polyaniline-sensor could be further employed in the study of the relation between the content of L-ascorbic acid in body fluids and clinical parameters, e.g., cell ageing.  相似文献   

8.
三氧化钼与金纳米粒子复合薄膜光致变色特性的研究   总被引:3,自引:0,他引:3  
MoO3具有光致变色特性,在大屏幕显示、高密度存储和灵巧窗等研究领域中具有潜在的应用前景^[1-3]。但由于MoO3薄膜中相当一部分光生载流子被复合,其参与变色反应的利用率很低,导致MoO3薄膜的变色效率较低,使其难以实现实用化。半导体表面修饰贵金属后,在半导体/金属界面上可形成Schottky势垒,这将有助于光生载流子的有效分离,从而提高其利用率。据此,本文采用在MoO3薄膜表面修饰金纳米粒子的方法,制备了MnO3和金纳米粒子的复合薄膜(MoO3/Au),变色试验结果表明,MoO3/Au复合薄膜的紫外和可见光变色效率相对MoO3薄膜均有较大的提高。  相似文献   

9.
Multilayer nanocomposites from polyaniline (PANI) and gold nanoparticles (AuNPs) were formed by layer-by-layer deposition. The formation of PANI–AuNPs multilayer structures was monitored by UV-vis absorption spectroscopy and cyclic voltammetry. Each deposited bilayer of PANI–AuNPs led to a monotonous and almost linear increase in both optical absorbance and the first current peak of PANI oxidation. The prepared multilayer nanocomposites were characterized by in situ conductivity measurements at different pH and potential and by transmission electron microscopy. Finally, chemosensitive properties of the new material based on the intrinsic affinity of gold nanoparticles were studied. Changes in the film resistance on exposure to vapors of mercury and sulfur-containing compounds were observed.  相似文献   

10.
Pettit CM  Roy D 《The Analyst》2007,132(6):524-535
Surface plasmon resonance (SPR) spectroscopy is an efficient probe of transient structural changes in molecular films. To analyze kinetic SPR data for such systems, generally it is necessary to adapt an adequate theoretical framework that would allow one to express the measured optical quantities (time-dependent shifts of the resonance angle or wavelength) in terms of the structural parameters (layer thickness, mass density, or surface coverage) of the sample molecules. We present here theoretical calculations and illustrative experimental results to address certain essential elements of this type of data analysis for transient SPR systems. The phenomenological framework we consider here is based on multilayer reflectivity calculations, and can be applied to a broad class of systems involving ordered molecular layers on supporting gold films. A typical application of these calculations is demonstrated through the analysis of specific SPR experiments designed to probe the kinetics of pH-induced structural changes in a molecular film of 11-mercaptoundecanoic acid (MUA) on a thin gold film.  相似文献   

11.
通过旋涂法,采用不同浓度的前躯体制备了氧化锌多层膜,并制备了基于此多层膜的薄膜晶体管器件.实验证明,基于按照氧化锌前躯体浓度顺序为0.25、0.10和0.05 mol.L-1依次旋涂前躯体溶液制备的氧化锌薄膜的晶体管器件的载流子迁移率为0.02 cm.2V-.1s-1,高于按照浓度顺序为0.05、0.10和0.25 mol.L-1依次旋涂前躯体溶液制备的氧化锌薄膜的载流子迁移率(0.013 cm2.V-.1s-1).原子力显微镜(AFM)结果表明,前一种薄膜粗糙度的均方根值(rms)为3.95 nm,而后一种薄膜粗糙度的rms远远高于前者,为4.52 nm,这就说明了氧化锌薄膜的粗糙度对薄膜的半导体性质有很大的影响,这是由于平整的薄膜有利于形成理想的源/漏电极与半导体层的接触.在晶体管中,起传输作用的半导体层是靠近ZnO/SiO2界面处的几纳米的半导体层中的氧化锌晶粒,因此起始形成的氧化锌薄膜的结晶度影响着晶体管的性能.采用X射线衍射(XRD)测试了多层膜中起始形成的薄膜的结晶性能.对于前一种薄膜,起始形成的薄膜为多晶薄膜,而对于后一种薄膜,起始形成的薄膜是无定形薄膜.因此,粗糙度以及起始形成的薄膜的结晶度影响着多层半导体薄膜的性质.  相似文献   

12.
The electrodeposition of thin selenium (Se) films from 1-ethyl-3-methyl-imidazolium trifluromethylsulfonate at room and elevated temperatures on gold and on copper substrates was studied under open-air conditions. The effect of bath temperature on the composition and structure of the deposited films was examined using cyclic voltammetry, chemical analysis and X-ray diffraction analysis. The obtained results showed that on gold substrate and at room temperature, a reddish Se film grows mainly in amorphous, monoclinic, rhombohedral and hexagonal structure, while at temperatures ≥90 °C, a grayish film of hexagonal and rhombohedral structure is deposited. Photoelectron spectroscopy shows that both films consist of pure Se with only slight surface contaminations by remnants from the electrodeposition. Due to the differences in phase structure and the presence of the monoclinic phase, the reddish films showed higher light absorbance. The band gap of the reddish film is close to that of pure amorphous Se reported in literature. Deposition on copper substrate leads to formation of CuSe and CuSe2 at room temperature and at 70 °C, respectively.  相似文献   

13.
细胞支架作为组织工程的组成部分为细胞生长提供了最佳微环境 ,并对细胞生长与功能进行控制 .由于细胞对支架表面的生物识别是细胞附着、生长和增殖的基本前提 ,所以对材料表面的功能化是一个重要的课题 [1,2 ] . Shoichet等 [3 ] 通过化学反应或等离子体处理的方法 ,将蛋白质引入到材料表面而使其功能化 .基片在两种带有相反电荷的聚电解质溶液中交替吸附 ,其表面形成致密有序的超薄自组装膜 ,这种层 -层自组装技术不仅制备方法简单 ,无需特殊的设备 ,而且对膜组成和厚度能随意调控 ,以水为介质 ,对环境友好 [4~ 6] ,无疑是一项重要的表…  相似文献   

14.
Stable films of biopolymer chitosan and carbon nanotubes were prepared by a layer-by-layer self-assembly technique. Atomic force microscopy, scanning electron microscopy, cyclic voltammetry, and UV-vis spectroscopy were used to characterize the film assembly. Atomic force microscopy and scanning electron microscopy showed that an even, stable film was formed. The UV-vis spectroscopy and cyclic voltammetry study indicated the uniform growth of the film. The property of the self-assembled multilayer film in promoting protein electron transfer was demonstrated by incorporating microperoxidase-11 in the film. Microperoxidase-11 in the multilayer film could transfer electrons with the electrode indicating that carbon nanotubes could wire the protein to the electrode. The electrocatalytic activity of the microperoxidase-11 containing multilayer film-modified electrode toward H(2)O(2) and O(2) was investigated. The results showed that along with the increase in the assembled layers the electrocatalytic reduction potentials of H(2)O(2) and O(2) shifted positively. The prepared multilayer film of chitosan and carbon nanotubes containing protein was a sensitive interface for electrocatalytic study.  相似文献   

15.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

16.
This study described fabrication, characterization, and application of multilayer films based on layer‐by‐layer assembly of ferrocene poly(ethylenimine) and gold nanoparticles. Assembly process of the multilayer film was investigated by atomic force microscopy, UV‐visible absorption spectroscopy and electrochemical impedance spectroscopy. The multilayer films exhibited a pair of well‐defined redox peaks as revealed by cyclic voltammetry, as well as bifunctional and fine‐tunable electrocatalysis for oxidation of ascorbic acid and reduction of oxygen. Both the outer layer and layer number had effect on the electrocatalytic response. Electrocatalytic activity of the films could be controlled with assemblies at the nanoscale level by simply adjusting deposition cycles or amount of component in the films.  相似文献   

17.
二氧化硅纳米粒子薄膜的制备及光学性能   总被引:7,自引:0,他引:7  
以二氧化硅胶体和聚二烯丙基二甲基氯化铵(PDDA)为原料,利用静电自组装技术制备了PDDA/SiO2复合薄膜. TEM图象显示,薄膜中的SiO2纳米粒子为密堆积,薄膜均匀、致密;电子衍射实验结果显示,所组装的薄膜为非晶态膜.载玻片表面组装SiO2纳米粒子薄膜后,透射率随薄膜双层数增加呈现周期变化.薄膜具有增透作用,载玻片双面组装薄膜后在一定波长范围内的透射率可提高5%以上. PDDA/SiO2复合薄膜的光学性质主要由SiO2纳米粒子决定,每一双层的平均物理厚度小于SiO2纳米粒子的粒径,薄膜中存在层间穿插现象,逐层组装的复合薄膜具有单层光学薄膜的特性.  相似文献   

18.
The distance dependence of the localized surface plasmon (SP) extinction of discontinuous gold films is a crucial issue in the application of transmission surface plasmon resonance (T-SPR) spectroscopy to chemical and biological sensing. This derives from the usual sensing configuration, whereby an analyte binds to a selective receptor layer on the gold film at a certain distance from the metal surface. In the present work the distance sensitivity of T-SPR spectroscopy of 1.0-5.0 nm (nominal thickness) gold island films evaporated on silanized glass substrates is studied by using coordination-based self-assembled multilayers, offering thickness tuning in the range from approximately 1 to approximately 15 nm. The morphology, composition and optical properties of the Au/multilayer systems were studied at each step of multilayer construction. High-resolution scanning electron microscopy (HRSEM) showed no apparent change in the underlying Au islands, while atomic force microscopy (AFM) indicated flattening of the surface topography during multilayer construction. A regular growth mode of the organic layers was substantiated by X-ray photoelectron spectroscopy (XPS). Transmission UV-visible spectra showed an increase of the extinction and a red shift of the maximum of the SP band upon addition of organic layers, establishing the distance dependence of the Au SP absorbance. The distance sensitivity of T-SPR spectroscopy can be varied by using characteristic substrate parameters, that is, Au nominal thickness and annealing. In particular, effective sensitivity up to a distance of at least 15 nm is demonstrated with 5 nm annealed Au films. It is shown that intensity measurements, particularly in the plasmon intensity change (PIC) presentation, provide an alternative to the usually measured plasmon band position, offering good accuracy and the possibility of measuring at a single wavelength. The present distance sensitivity results provide the basis for further development of T-SPR transducers based on receptor-coated Au island films.  相似文献   

19.
Direct electrochemistry of hemoglobin (Hb) was observed at glassy carbon electrode (GCE) modified with undoped nanocrystalline diamond (UND) and Hb multilayer films via layer-by-layer assembly. UV-VIS absorbance spectroscopy, electrochemical impedance spectroscopy and cyclic voltammograms were employed to characterize the film. The results showed that the UND had the effect of enhancing the electron transfer between Hb and the electrode surface. Hb in the multilayer films maintained its bioactivity and structure. It also exhibited a good catalytic activity towards the reduction of H(2)O(2). The reciprocal of catalytic current showed a linear dependence on the reciprocal of H(2)O(2) concentration ranging from 0.5 microM to 0.25 mM with a detection limit of 0.4 microM. The apparent Michaelis-Menten constant was estimated to be 0.019 mM.  相似文献   

20.
Y2O3 nanoparticulate thin films have been prepared using an emulsion liquid membrane (water-in-oil-in-water (W/O/W) emulsion) system, consisting of Span 83 (sorbitan sesquioleate) as a surfactant and VA-10 (2-methyl-2-ethylheptanoic acid) as an extractant (cation carrier). Yttrium ions were extracted from the external water phase and stripped into the internal water phase to make precursor oxalate nanoparticles. Y2O3 nanoparticulate thin film was prepared by casting the W/O emulsion, separated from the external phase and containing the Y oxalate nanoparticles, on a Si substrate, followed by calcination in air. Well-arranged thin-layer nanoparticulate film, consisting of Y2O3 nanoparticles smaller than 20 nm, was obtained via spin coating of the W/O emulsion. A multilayer nanoparticulate thin film was also fabricated via a simple procedure of repeated coating and subsequent calcination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号