首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine‐O6‐DNA‐Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non‐methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non‐linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples.  相似文献   

2.
3.
Wu Z  Luo J  Ge Q  Zhang D  Wang Y  Jia C  Lu Z 《Analytica chimica acta》2007,603(2):199-204
Aberrant DNA methylation of CpG site in the gene promoter region has been confirmed to be closely associated with carcinogenesis. In this present study, a new method based on the allele-specific extension on microarray technique for detecting changes of DNA methylation in cancer was developed. The target gene regions were amplified from the bisulfite treated genomic DNA (gDNA) with modified primers and treated with exonuclease to generate single-strand targets. Allele-specific extension of the immobilized primers took place along a stretch of target sequence with the presence of DNA polymerase and Cy5-labeled dGTP. To control the false positive signals, the hybridization condition, DNA polymerase, extension time and primers design were optimized. Two breast tumor-related genes (P16 and E-cadherin) were analyzed with this present method successfully and all the results were compatible with that of traditional methylation-specific PCR. The experiments results demonstrated that this DNA microarray-based method could be applied as a high throughput tool for methylation status analysis of the cancer-related genes, which could be widely used in cancer diagnosis or the detection of recurrence.  相似文献   

4.
The goal of this study is to explore the application of epigenetic markers in the identification of biofluids that are commonly found at the crime scene. A series of genetic loci were examined in order to define epigenetic markers that display differential methylation patterns between blood, saliva, semen, and epithelial tissue. Among the different loci tested, we have identified a panel of markers, C20orf117, ZC3H12D, BCAS4, and FGF7, that can be used in the determination of these four tissue types. Since methylation modifications occur at cytosine bases that are immediately followed by guanine bases (CpG sites), methylation levels were measured at CpG sites spanning each marker. Up to 11 samples of each tissue type were collected and subjected to bisulfite modification to convert unmethylated CpG-associated cytosine bases to thymine bases. The bisulfite modified DNA was then amplified via nested PCR using a primer set of which one primer was biotin labeled. Biotinylated PCR products were in turn analyzed and the methylation level at each CpG site was quantitated by pyrosequencing. The percent methylation values at each CpG site were determined and averaged for each tissue type. The results indicated significant methylation differences between the tissue types. The methylation patterns at the ZC3H12D and FGF7 loci differentiated sperm from blood, saliva, and epithelial cells. The C20orf117 locus differentiated blood from sperm, saliva, and epithelial cells and saliva was differentiated from blood, sperm, and epithelial cells at a fourth locus, BCAS4. The results of this study demonstrate the applicability of epigenetic markers as a novel tool for the determination of biofluids using bisulfite modification and pyrosequencing.  相似文献   

5.
p16基因甲基化的芯片定量检测   总被引:3,自引:0,他引:3  
p16基因的失活与多种肿瘤相关,但p16基因缺失率较低,突变更为罕见,p16基因启动子区CpG岛甲基化与其蛋白表达密切相关.DNA甲基化已成为目前研究的热点,现有的技术包括:Southernblot法、限制性内切酶-PCR法、DNA测序法、甲基化特异性PCR(MSP)、  相似文献   

6.
The goal of this study is to develop an epigenetic multiplex for body fluid identification based on tissue specific DNA methylation. A series of genetic loci capable of discerning the origin of DNA as coming from saliva, blood, vaginal epithelia, or semen were used for this application. The markers – BCAS4, CG06379435, VE_8, and ZC3H12D – were amplified together and then sequenced via pyrosequencing. Methylation values for cytosine guanine dinucleotide (CpG) sites at each locus were then measured across the four markers. In total, 124 samples were collected, and bisulfite modified to convert unmethylated DNA to uracil. This converted DNA was then amplified via multiplex PCR with reverse primers containing a biotin molecule. Biotinylated PCR products were then analyzed using pyrosequencing to generate a series of pyrograms containing 18 CpG sites. The percent methylation at each CpG site was determined, and then agglomerative hierarchical cluster analysis was used to create a model to indicate sample origin. Further analysis reduced the number of CpG sites required for optimal determination of body fluid type to five. This study demonstrates an efficient multiplexed body fluid identification process utilizing DNA methylation that can be easily implemented in forensic laboratories.  相似文献   

7.
Despite numerous observations regarding the relationship between DNA methylation changes and cancer progression, only a few genes have been verified as diagnostic biomarkers of colorectal cancer (CRC). To more practically detect methylation changes, we performed targeted bisulfite sequencing. Through co-analysis of RNA-seq, we identified cohort-specific DNA methylation markers: CpG islands of the intragenic regions of PDX1, EN2, and MSX1. We validated that these genes have oncogenic features in CRC and that their expression levels are increased in correlation with the hypermethylation of intragenic regions. The reliable depth of the targeted bisulfite sequencing data enabled us to design highly optimized quantitative methylation-specific PCR primer sets that can successfully detect subtle changes in the methylation levels of candidate regions. Furthermore, these methylation levels can divide CRC patients into two groups denoting good and poor prognoses. In this study, we present a streamlined workflow for screening clinically significant differentially methylated regions. Our discovery of methylation markers in the PDX1, EN2, and MSX1 genes suggests their promising performance as prognostic markers and their clinical application in CRC patients.Subject terms: Prognostic markers, Methylation analysis  相似文献   

8.
The determination of tissue type is important when reconstructing a crime scene as skin cells may indicate innocent contact, whereas other types of cells, such as blood and semen, may indicate foul play. Up to now, there has been no specific DNA methylation-based marker to distinguish skin cell DNA from other body fluids. The goal of this study is to develop a DNA methylation-based assay to detect and identify skin cells collected at forensic crime scenes for use in DNA typing. For this reason, we have utilized a DNA methylation chip array-based genome-wide association study to identify skin-specific DNA methylation markers. DNA obtained from skin along with other body fluids, such as semen, saliva, blood, and vaginal epithelia, were tested using five genes that were identified as sites for potential new epigenetic skin markers. Samples were collected, bisulfite converted, and subjected to real-time polymerase chain reaction (PCR) with high-resolution melt analysis. In our studies, when using WDR11, PON2, and NHSL1 assays with bisulfite-modified PCR, skin/sweat amplicons melted at lower temperatures compared to blood, saliva, semen, and vaginal epithelia. One-way analysis of variance demonstrates that these three skin/sweat markers are significantly different when compared with other body fluids (p < 0.05). These results demonstrate that high-resolution melt analysis is a promising technology to detect and identify skin/sweat DNA from other body fluids.  相似文献   

9.
In this article, we show that methylation‐specific multiplex PCR (MS‐multiplex PCR) is a sensitive and specific single assay for detecting CpG methylation status as well as copy number aberrations. We used MS‐multiplex PCR to simultaneously amplify three sequences: the 3′ ends of the SNRPN gene (for unmethylated sequences), the KRITI gene (as internal control), and the promoter of the SNRPN gene containing CpG islands (for methylated sequences) after digestion with a methylation‐sensitive restriction enzyme (HhaI). We established this duplex assay for the analysis of 38 individuals with Prader–Willi syndrome, 2 individuals with Angelman syndrome, and 28 unaffected individuals. By comparing the copy number of the three regions, the methylation status and the copy number changes can be easily distinguished by MS‐multiplex PCR without the need of bisulfite treatment of the DNA. The data showed that MS‐multiplex PCR allows for the estimation of the methylation level by comparing the copy number aberrations of unknown samples to the standards with a known methylated status. The in‐house‐designed MS‐multiplex PCR protocol is a relatively simple, cost‐effective, and highly reproducible approach as a significant strategy in clinical applications for epigenetics in a routine laboratory.  相似文献   

10.
11.
Tumorigenesis is characterized by alterations of methylation profiles including loss and gain of 5-methylcytosine. Recently, we identified a single CpG, which seemed to be consistently hypomethylated in pilocytic astrocytomas but not in other gliomas. To evaluate its applicability as a biomarker, we examined its methylation status in a large panel of gliomas (n = 97). Methylation-dependent DNA sequence variation may be considered a kind of single nucleotide polymorphism (methylSNP). MethylSNPs can be easily converted into common SNPs of the C/T type by sodium bisulfite treatment of the DNA and afterwards subjected to conventional SNP typing. We adapted SnaPshot trade mark and Pyrosequencing trade mark to determine the methylation of our test CpG in a quantitative manner. The adapted methods, called SNaPmeth and PyroMeth, respectively, gave nearly identical results, however data obtained with PyroMeth showed less scattering. Furthermore, the integrated software for allele frequency determination from Pyrosequencing could be used directly for data analysis while SnaPmeth data had to be exported and processed manually. Although data did not confirm our previous result of a preferential hypomethylation of the tested CpG in pilocytic astrocytomas, we consider quantitative methylSNP analysis by SNaPmeth or PyroMeth a favorable alternative to existing high-throughput methylation assays. It combines single CpG analysis with accurate quantitation and is amenable to high throughput.  相似文献   

12.
We describe the quantitative nonlabel electrochemical detection of both cytosine (C) and methylcytosine (mC) in oligonucleotides using newly developed nanocarbon film electrodes. The film consists of nanocrystalline sp2 and sp3 mixed bonds formed by employing the electron cyclotron resonance (ECR) sputtering method. We successfully used this film to develop a simple electrochemical DNA methylation analysis technique based on the measurement of the differences between the oxidation currents of C and mC since our ECR nanocarbon film electrode can directly measure all DNA bases more quantitatively than conventional glassy carbon or boron-doped diamond electrodes. The excellent properties of ECR nanocarbon film electrodes result from the fact that they have a wide potential window while maintaining the high electrode activity needed to oxidize oligonucleotides electrochemically. Proof-of-concept experiments were performed with synthetic oligonucleotides including different numbers of C and mC. This film allowed us to perform both C- and mC-positive assays solely by using the electrochemical oxidation of oligonucleotides without bisulfite or labeling processes.  相似文献   

13.
Hybridization behavior of 24-meric and 105-meric single stranded DNAs derived from CDH4 gene related to cadherin cell-adhesive protein was tested with 24-meric DNA probe in a ferrocenylnaphthalene diimide (FND)-based hybridization assay. Hybridization efficiency in this system was also clarified using chronocoulometric (CC) measurement with Hexaammineruthenium (III) probe (RuHx). This is first example to calculate hybridization efficiency of PCR product with a DNA probe immobilized on the electrode. Although hybridization efficiency was really small for the PCR product as expected (20% for 105-meric PCR product), PCR products carrying aberrant methylation were discriminated from the wild one due to the electrochemical signal of FND. It was possible since FND possessed high preference for double stranded DNA, especially on the electrode. When applied to aberrant methylation detection for the fragment of CDH4 gene, this system can discriminate over 0.5 ng μL−1 sample DNA, which is superior to bisulfite sequencing or MSP and COBRA assays.  相似文献   

14.
Yang Y  Wang W  Li Y  Tu J  Bai Y  Xiao P  Zhang D  Lu Z 《Electrophoresis》2010,31(21):3537-3544
DNA methylation is one of the most important epigenetic modification types, which plays a critical role in gene expression. High efficient surveying of whole genome DNA methylation has been aims of many researchers for long. Recently, the rapidly developed massively parallel DNA‐sequencing technologies open the floodgates to vast volumes of sequence data, enabling a paradigm shift in profiling the whole genome methylation. Here, we describe a strategy, combining methylated DNA immunoprecipitation sequencing with peak search to identify methylated regions on a whole‐genome scale. Massively parallel methylated DNA immunoprecipitation sequencing combined with methylation DNA immunoprecipitation was adopted to obtain methylated DNA sequence data from human leukemia cell line K562, and the methylated regions were identified by peak search based on Poison model. From our result, 140 958 non‐overlapping methylated regions have been identified in the whole genome. Also, the credibility of result has been proved by its strong correlation with bisulfite‐sequencing data (Pearson R2=0.92). It suggests that this method provides a reliable and high‐throughput strategy for whole genome methylation identification.  相似文献   

15.
Aberrant DNA methylation of CpG sites has been confirmed to be closely associated with carcinogenesis.Based on the hyperbranched rolling circle amplification(HRCA) and microarray techniques,a new method for qualitative detection of methylation was developed.In the present study,padlock probes hybridize the sample DNA at the methylation site to form a probe-DNA complex which is ligated and digested simultaneously by methylation specific enzymes.Only at the methylated CpG site is the padlock probe ligated successfully to form a circle template for the HRCA reaction.Utilizing the method of 3-dimensional polyacrylamide gel-based microarray,the HRCA product will be immobilized on the slide to form a DNA microarray,which can universally hybridize the Cy3-labeled oligonucleotide probe to detect the methylation status of CpG sites.To control the false positive signals,DNA ligase and temperature of ligation/digestion are optimized.Methylation status of four CpG sites located in P15,Ecadherin,hMLH1 and MGMT genes were analyzed successfully with this method and all the results were compatible with that of methylation-specific PCR.Our research proves that this method is simple and inexpensive,and could be applied as a high-throughput tool to qualitatively determine the methylation status of CpG sites.  相似文献   

16.
DNA microarray: a high throughput approach for methylation detection   总被引:7,自引:0,他引:7  
We described a DNA microarray-based method combined with bisulphite treatment of DNA and regular PCR to examine hyper-methylation in promoter 1A of APC gene. A set of oligonucleotide probes were designed and immobilized on the aldehyde-coated glass slides for detecting the methylation pattern of 15 selected CpG sites in the region. The methylation status of 30 colorectal tumor samples have been examined by both of methylation-specific PCR (MS-PCR) and the present microarray method. The methylation pattern of the 15 CpG sites for the samples have been obtained with the microarray. A total of 19 samples out of 30 were methylated by microarray, in which five samples cannot be detected by MS-PCR due to the methylated CpG patterns not accordant to the MS-PCR primers. The detecting ratio for methylation of APC gene of colorectal tumor samples increased from 46.7% with MS-PCR to 63.3% with the microarray, which successfully demonstrated that DNA microarray-based method not only can obtained the methylation patterns for the related genes, but also decrease the false-negative results of methylation status by the conventional MS-PCR for the investigated genes.  相似文献   

17.
A separation‐free single‐base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele‐specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5′‐end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite‐converted genomic DNA, and a DNA polymerase. A single base‐extended primer (i.e., SBE product) that was 5′‐Cy3‐ and 3′‐Cy5‐tagged was formed by incorporation of the Cy5‐labeled terminator into the 3′‐end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.  相似文献   

18.
Supercharged proteins are a new class of functional proteins with exceptional stability and potent ability to deliver bio‐macromolecules into cells. As a proof‐of‐principle, a novel application of supercharged proteins as a versatile biosensing platform for nucleic acid detection and epigenetics analysis is presented. Taking supercharged green fluorescent protein (ScGFP) as the signal reporter, a simple turn‐on homogenous method for DNA detection has been developed based on the polyionic nanoscale complex of ScGFP/DNA and toehold strand displacement. This assay shows high sensitivity and potent ability to detect single‐base mismatch. Furthermore, combined with bisulfite conversion, this ScGFP‐based assay was further applied to analyze site‐specific DNA methylation status of genomic DNA extracted from real human colon carcinoma tissue sample with ultrahigh sensitivity (4 amol methylated DNA).  相似文献   

19.
Ge C  Fang Z  Chen J  Liu J  Lu X  Zeng L 《The Analyst》2012,137(9):2032-2035
In this work, we describe a simple colorimetric method to detect DNA methylation. Adenomatous polyposis coli (APC) with a small CpG region containing methylated cytosine (methylated APC) was synthesized and tested. Methylated APC was first captured and enriched by anti-5-methylcytosine monoclonal antibody conjugated magnetic microspheres (MMPs). Then a probe partly complementary to the APC sequence was added, resulting in the formation of DNA duplexes. The microsphere-captured probe was then released by heat denaturation and added into unmodified gold nanoparticle (AuNP) solution. Colorimetric detection was performed by salt-induced aggregation. The limit of detection is 80 fmol. Semi-quantitative analysis was done with a UV/Vis spectrophotometer by recording the absorbance of AuNP solution at 520 nm. Thus, this method provides a simple, rapid and quantitative tool for DNA methylation detection.  相似文献   

20.
We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号