首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
A numerical investigation on a technique for choosing an optimal shape parameter is proposed. Radial basis functions (RBFs) and their derivatives are used as interpolants in the asymmetric collocation radial basis method, for solving systems of partial differential equations. The shape parameter c in RBFs plays a major role in obtaining high quality solutions for boundary value problems. As c is a user defined value, inexperienced users may compromise the quality of the solution, often a problem of this meshless method. Here we propose a statistical technique to choose the shape parameter in radial basis functions. We use a cross‐validation technique suggested by Rippa 6 for interpolation problems to find a cost function Cost(c) that ideally has the same behavior as an error function. If that is the case, the parameter c that minimizes the cost function will be an optimal shape parameter, in the sense that it minimizes the error function. The form of the cost and error functions are analized for several examples, and for most cases the two functions have a similar behavior. The technique produced very accurate results, even with a small number of points and irregular grids. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

2.
In this work we present and analyze a new scaled conjugate gradient algorithm and its implementation, based on an interpretation of the secant equation and on the inexact Wolfe line search conditions. The best spectral conjugate gradient algorithm SCG by Birgin and Martínez (2001), which is mainly a scaled variant of Perry’s (1977), is modified in such a manner to overcome the lack of positive definiteness of the matrix defining the search direction. This modification is based on the quasi-Newton BFGS updating formula. The computational scheme is embedded in the restart philosophy of Beale–Powell. The parameter scaling the gradient is selected as spectral gradient or in an anticipative manner by means of a formula using the function values in two successive points. In very mild conditions it is shown that, for strongly convex functions, the algorithm is global convergent. Preliminary computational results, for a set consisting of 500 unconstrained optimization test problems, show that this new scaled conjugate gradient algorithm substantially outperforms the spectral conjugate gradient SCG algorithm. The author was awarded the Romanian Academy Grant 168/2003.  相似文献   

3.
In our previous paper (Hušek and Pulgarín, Topol Appl, doi:, 2009) we characterized the set C(X) of real-valued continuous functions on a topological space X as a real ℓ-group. The present paper weakens the situation to the level of semi-affine lattices.  相似文献   

4.
In high-dimensional directional statistics one of the most basic probability distributions is the von Mises-Fisher (vMF) distribution. Maximum likelihood estimation for the vMF distribution turns out to be surprisingly hard because of a difficult transcendental equation that needs to be solved for computing the concentration parameter κ. This paper is a followup to the recent paper of Tanabe et al. (Comput Stat 22(1):145–157, 2007), who exploited inequalities about Bessel function ratios to obtain an interval in which the parameter estimate for κ should lie; their observation lends theoretical validity to the heuristic approximation of Banerjee et al. (JMLR 6:1345–1382, 2005). Tanabe et al. (Comput Stat 22(1):145–157, 2007) also presented a fixed-point algorithm for computing improved approximations for κ. However, their approximations require (potentially significant) additional computation, and in this short paper we show that given the same amount of computation as their method, one can achieve more accurate approximations using a truncated Newton method. A more interesting contribution of this paper is a simple algorithm for computing I s (x): the modified Bessel function of the first kind. Surprisingly, our na?ve implementation turns out to be several orders of magnitude faster for large arguments common to high-dimensional data, than the standard implementations in well-established software such as Mathematica ?, Maple ?, and Gp/Pari.  相似文献   

5.
Recently, we described a generalization of Rosser’s algorithm for a single linear Diophantine equation to an algorithm for solving systems of linear Diophantine equations. Here, we make use of the new formulation to present a new algorithm for solving rank one perturbed linear Diophantine systems, based on using Rosser’s approach. Finally, we compare the efficiency and effectiveness of our proposed algorithm with the algorithm proposed by Amini and Mahdavi-Amiri (Optim Methods Softw 21:819–831, 2006).  相似文献   

6.
We present two algorithms to compute m-fold hypergeometric solutions of linear recurrence equations for the classical shift case and for the q-case, respectively. The first is an m-fold generalization and q-generalization of the algorithm by van Hoeij (Appl Algebra Eng Commun Comput 17:83–115, 2005; J. Pure Appl Algebra 139:109–131, 1998) for recurrence equations. The second is a combination of an improved version of the algorithms by Petkovšek (Discrete Math 180:3–22, 1998; J Symb Comput 14(2–3):243–264, 1992) for recurrence and q-recurrence equations and the m-fold algorithm from Petkovšek and Salvy (ISSAC 1993 Proceedings, pp 27–33, 1993) for recurrence equations. We will refer to the classical algorithms as van Hoeij or Petkovšek respectively. To formulate our ideas, we first need to introduce an adapted version of an m-fold Newton polygon and its characteristic polynomials for the classical case and q-case, and to prove the important properties in this case. Using the data from the Newton polygon, we are able to present efficient m-fold versions of the van Hoeij and Petkovšek algorithms for the classical shift case and for the q-case, respectively. Furthermore, we show how one can use the Newton polygon and our characteristic polynomials to conclude for which m ? \mathbbN{m\in \mathbb{N}} there might be an m-fold hypergeometric solution at all. Again by using the information obtained from the Newton polygon, the presentation of the q-Petkovšek algorithm can be simplified and streamlined. Finally, we give timings for the ‘classical’ q-Petkovšek, our q-van Hoeij and our modified q-Petkovšek algorithm on some classes of problems and we present a Maple implementation of the m-fold algorithms for the q-case.  相似文献   

7.
In this paper, we present a simple factor 6 algorithm for approximating the optimal multiplicative distortion of embedding a graph metric into a tree metric (thus improving and simplifying the factor 100 and 27 algorithms of Bǎdoiu et al. (Proceedings of the eighteenth annual ACM–SIAM symposium on discrete algorithms (SODA 2007), pp. 512–521, 2007) and Bǎdoiu et al. (Proceedings of the 11th international workshop on approximation algorithms for combinatorial optimization problems (APPROX 2008), Springer, Berlin, pp. 21–34, 2008)). We also present a constant factor algorithm for approximating the optimal distortion of embedding a graph metric into an outerplanar metric. For this, we introduce a general notion of a metric relaxed minor and show that if G contains an α-metric relaxed H-minor, then the distortion of any embedding of G into any metric induced by a H-minor free graph is ≥α. Then, for H=K 2,3, we present an algorithm which either finds an α-relaxed minor, or produces an O(α)-embedding into an outerplanar metric.  相似文献   

8.
On choosing “optimal” shape parameters for RBF approximation   总被引:1,自引:0,他引:1  
Many radial basis function (RBF) methods contain a free shape parameter that plays an important role for the accuracy of the method. In most papers the authors end up choosing this shape parameter by trial and error or some other ad hoc means. The method of cross validation has long been used in the statistics literature, and the special case of leave-one-out cross validation forms the basis of the algorithm for choosing an optimal value of the shape parameter proposed by Rippa in the setting of scattered data interpolation with RBFs. We discuss extensions of this approach that can be applied in the setting of iterated approximate moving least squares approximation of function value data and for RBF pseudo-spectral methods for the solution of partial differential equations. The former method can be viewed as an efficient alternative to ridge regression or smoothing spline approximation, while the latter forms an extension of the classical polynomial pseudo-spectral approach. Numerical experiments illustrating the use of our algorithms are included.  相似文献   

9.
In this paper, we present a new formulation for constructing an n-dimensional ellipsoid by generalizing the computation of the minimum volume covering ellipsoid. The proposed ellipsoid construction is associated with a user-defined parameter β∈[0,1), and formulated as a convex optimization based on the CVaR minimization technique proposed by Rockafellar and Uryasev (J. Bank. Finance 26: 1443–1471, 2002). An interior point algorithm for the solution is developed by modifying the DRN algorithm of Sun and Freund (Oper. Res. 52(5):690–706, 2004) for the minimum volume covering ellipsoid. By exploiting the solution structure, the associated parametric computation can be performed in an efficient manner. Also, the maximization of the normal likelihood function can be characterized in the context of the proposed ellipsoid construction, and the likelihood maximization can be generalized with parameter β. Motivated by this fact, the new ellipsoid construction is examined through a multiclass discrimination problem. Numerical results are given, showing the nice computational efficiency of the interior point algorithm and the capability of the proposed generalization.  相似文献   

10.
We provide an equivalent formulation of a previously proposed noniterative algorithm (see A. Maugeri, Appl. Math. Optim. 16, 169–185, 1987) for the traffic equilibrium problem. Moreover, under the strict monotonicity assumption, we provide an improved algorithm which enlarges the range of applicability of the previous algorithm and decreases considerably its computational effort. Our algorithm is based on a general algorithm for variational inequalities (see O. Mancino, G. Stampacchia, J. Optim. Theory Appl. 9, 3–23, 1972), which we further develop and adapt to the traffic equilibrium problem. Both our proofs and the algorithm exploit directly the equilibrium conditions which characterize our problem.  相似文献   

11.
In this paper, we first give an overview of the precedence-type test procedures. Then we propose a nonparametric test based on early failures for the equality of two life-time distributions against two alternatives concerning the best population. This procedure utilizes the minimal Wilcoxon rank-sum precedence statistic (Ng and Balakrishnan, 2002, 2004) which can determine the difference between populations based on early (100q%) failures. Hence, this procedure can be useful in life-testing experiments in biological as well as industrial settings. After proposing the test procedure, we derive the exact null distribution of the test statistic in the two-sample case with equal or unequal sample sizes. We also present the exact probability of correct selection under the Lehmann alternative. Then, we generalize the test procedure to the k-sample situation. Critical values for some sample sizes are presented. Next, we examine the performance of this test procedure under a location-shift alternative through Monte Carlo simulations. Two examples are presented to illustrate our test procedure with selecting the best population as an objective.   相似文献   

12.
Based on the generalized graph convergence, first a general framework for an implicit algorithm involving a sequence of generalized resolvents (or generalized resolvent operators) of set-valued A-maximal monotone (also referred to as A-maximal (m)-relaxed monotone, and A-monotone) mappings, and H-maximal monotone mappings is developed, and then the convergence analysis to the context of solving a general class of nonlinear implicit variational inclusion problems in a Hilbert space setting is examined. The obtained results generalize the work of Huang, Fang and Cho (in J. Nonlinear Convex Anal. 4:301–308, 2003) involving the classical resolvents to the case of the generalized resolvents based on A-maximal monotone (and H-maximal monotone) mappings, while the work of Huang, Fang and Cho (in J. Nonlinear Convex Anal. 4:301–308, 2003) added a new dimension to the classical resolvent technique based on the graph convergence introduced by Attouch (in Variational Convergence for Functions and Operators, Applied Mathematics Series, Pitman, London 1984). In general, the notion of the graph convergence has potential applications to several other fields, including models of phenomena with rapidly oscillating states as well as to probability theory, especially to the convergence of distribution functions on ℜ. The obtained results not only generalize the existing results in literature, but also provide a certain new approach to proofs in the sense that our approach starts in a standard manner and then differs significantly to achieving a linear convergence in a smooth manner.  相似文献   

13.
A new stochastic model for mortality rate is proposed and analyzed on Italian mortality data. The model is based on a stochastic differential equation derived from a generalization of the Milevesky and Promislow model (Milevesky, M.A., Promislow, S.D.: Insur. Math. Econ. 29, 299–318 (2001)). We discuss and present a methodology, based on the discretisation approach by Wymer (Wymer, C.R.: Econometrica 40(3), 565–577 (1972)) to evaluate the parameters of our model. The comparison with the Milevesky and Promislow model shows the relevance of our proposal along an horizon, which includes periods of time with a different volatility of mortality rates. The estimate of the parameters turns out to be stable over time with the exception of the mean reverting parameter, which shows, for a person of a fixed age, an increase over time.  相似文献   

14.
In the multiple-output regression context, Hallin et al. (Ann Statist 38:635–669, 2010) introduced a powerful data-analytical tool based on regression quantile regions. However, the computation of these regions, that are obtained by considering in all directions an original concept of directional regression quantiles, is a very challenging problem. Paindaveine and Šiman (Comput Stat Data Anal 2011b) described a first elegant solution relying on linear programming techniques. The present paper provides another solution based on the fact that the quantile regions can also be computed from a competing concept of projection regression quantiles, elaborated in Kong and Mizera (Quantile tomography: using quantiles with multivariate data 2008) and Paindaveine and Šiman (J Multivar Anal 2011a). As a by-product, this alternative solution further provides various characteristics useful for statistical inference. We describe in detail the algorithm solving the parametric programming problem involved, and illustrate the resulting procedure on simulated data. We show through simulations that the Matlab implementation of the algorithm proposed in this paper is faster than that from Paindaveine and Šiman (Comput Stat Data Anal 2011b) in various cases.  相似文献   

15.
In this paper, we generalize the construction of strongly regular graphs in Tan et al. (J. Comb. Theory, Ser. A 117:668–682, 2010) from ternary bent functions to p-ary bent functions, where p is an odd prime. We obtain strongly regular graphs with three types of parameters. Using certain non-quadratic p-ary bent functions, our constructions can give rise to new strongly regular graphs for small parameters.  相似文献   

16.
The quickest path problem is related to the classical shortest path problem, but its objective function concerns the transmission time of a given amount of data throughout a path, which involves both cost and capacity. The K-quickest simple paths problem generalises the latter, by looking for a given number K of simple paths in non-decreasing order of transmission time. Two categories of algorithms are known for ranking simple paths according to the transmission time. One is the adaptation of deviation algorithms for ranking shortest simple paths (Pascoal et al. in Comput. Oper. Res. 32(3):509–520, 2005; Rosen et al. in Comput. Oper. Res. 18(6):571–584, 1991), and another is based on ranking shortest simple paths in a sequence of networks with fixed capacity lower bounds (Chen in Inf. Process. Lett. 50:89–92, 1994), and afterwards selecting the K quickest ones. After reviewing the quickest path and the K-quickest simple paths problems we describe a recent algorithm for ranking quickest simple paths (Pascoal et al. in Ann. Oper. Res. 147(1):5–21, 2006). This is a lazy version of Chen’s algorithm, able to interchange the calculation of new simple paths and the output of each k-quickest simple path. Finally, the described algorithm is computationally compared to its former version, as well as to deviation algorithms.   相似文献   

17.
We introduce an iterative sequence for finding the solution to 0∈T(v), where T : EE * is a maximal monotone operator in a smooth and uniformly convex Banach space E. This iterative procedure is a combination of iterative algorithms proposed by Kohsaka and Takahashi (Abstr. Appl. Anal. 3:239–249, 2004) and Kamamura, Kohsaka and Takahashi (Set-Valued Anal. 12:417–429, 2004). We prove a strong convergence theorem and a weak convergence theorem under different conditions respectively and give an estimate of the convergence rate of the algorithm. An application to minimization problems is given. This work was partially supported by the National Natural Sciences Grant 10671050 and the Heilongjiang Province Natural Sciences Grant A200607. The authors thank the referees for useful comments improving the presentation and Professor K. Kohsaka for pointing out Ref. 7.  相似文献   

18.
19.
In this paper, we propose a new smoothing Broyden-like method for solving nonlinear complementarity problem with P 0 function. The presented algorithm is based on the smoothing symmetrically perturbed minimum function φ(a, b) = min{a, b} and makes use of the derivative-free line search rule of Li et al. (J Optim Theory Appl 109(1):123–167, 2001). Without requiring any strict complementarity assumption at the P 0-NCP solution, we show that the iteration sequence generated by the suggested algorithm converges globally and superlinearly under suitable conditions. Furthermore, the algorithm has local quadratic convergence under mild assumptions. Some numerical results are also reported in this paper.  相似文献   

20.
In this paper, we present a measure of distance in a second-order cone based on a class of continuously differentiable strictly convex functions on ℝ++. Since the distance function has some favorable properties similar to those of the D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 [1992]), we refer to it as a quasi D-function. Then, a proximal-like algorithm using the quasi D-function is proposed and applied to the second-cone programming problem, which is to minimize a closed proper convex function with general second-order cone constraints. Like the proximal point algorithm using the D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 [1992]; Chen and Teboulle in SIAM J. Optim. 3:538–543 [1993]), under some mild assumptions we establish the global convergence of the algorithm expressed in terms of function values; we show that the sequence generated by the proposed algorithm is bounded and that every accumulation point is a solution to the considered problem. Research of Shaohua Pan was partially supported by the Doctoral Starting-up Foundation (B13B6050640) of GuangDong Province. Jein-Shan Chen is a member of the Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author’s work was partially supported by National Science Council of Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号