首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A post-column reagent (PCR) method for bromate analysis in drinking water with a method detection limit (MDL) and method reporting limit (MRL) of 0.1 and 0.5 microg/l, respectively, has been developed by the United States Environmental Protection Agency (EPA) for future publication as EPA Method 317.0. The PCR method provides comparable results to the EPA's Selective Anion Concentration (SAC) method used to support the laboratory analysis of Information Collection Rule (ICR) low-level bromate samples and offers a simple, rugged, direct injection method with potential to be utilized as a compliance monitoring technique for all inorganic Disinfectants/Disinfection By-Products (D/DBPs). It has superior sensitivity for bromate compared to EPA Method 300.1, which was promulgated as the compliance monitoring method for bromate under Stage 1 of the D/DBP rule. This paper addresses elimination of the chlorite interference that was previously reported in finished waters from public water systems (PWSs) that employ chlorine dioxide as the disinfectant. An evaluation of Method 317.0 for the analysis of bromate in commercial bottled waters is also reported.  相似文献   

2.
Resolving power of about 12,000 000 at m/z 675 has been achieved on low field homogeneity 4.7 T magnet using a dynamically harmonized Fourier transform ion cyclotron resonance (FT ICR) cell. Mass spectra of the fine structure of the isotopic distribution of a peptide were obtained and strong discrimination of small intensity peaks was observed in case of resonance excitation of the ions of the whole isotopic cluster to the same cyclotron radius. The absence of some peaks from the mass spectra of the fine structure was explained basing on results of computer simulations showing strong ion cloud interactions, which cause the coalescence of peaks with m/z close to that of the highest magnitude peak. The way to prevent peak discrimination is to excite ion clouds of different m/z to different cyclotron radii, which was demonstrated and investigated both experimentally and by computer simulations.
Figure
?  相似文献   

3.
The frequencies, harmonic force field and absolute IR intensities for butyne-2-d0 and butyne-2-d6 are reported. The final set of “harmonized” fundamental frequencies for butyne-2-d0 and butyne-2-d6 obeys the Teller—Redlich product rule very well. Starting values for the force constants were obtained from the harmonic force field of propyne, and diagonal force constants were adjusted in order to reproduce the experimental “harmonized” frequencies for the d0 and d6 compounds.The integrated IR intensities were measured according to the Wilson—Wells—Penner—Weber method, using nitrogen as a broadening gas. Thirteen sets of ?μ/?S values were obtained from the experimental intensities, using an iterative least-squares fitting procedure. This number could be reduced to one by use of several selection criteria. The signs of the remaining set appeared to be in complete agreement with the best set for propyne as reported both by Kondo and Koga and by Bode et al. The final ?μ/?S parameters were transformed into atomic polar tensors. Both kinds of intensity parameters are discussed and compared with corresponding parameters for related molecules.  相似文献   

4.
Given the current interest in measurement uncertainty (MU) in food microbiology, in particular for laboratory accreditation purposes, and the need to have harmonized reference documents specifically in that area at the international level, ISO is conducting works to meet this need. An ISO Technical Specification (ISO/TS 19036) is being prepared on MU estimation for quantitative determinations. A global approach has been chosen, based on the reproducibility standard deviation of the final result of the measurement process. Three possibilities are envisaged for the estimation of the reproducibility standard deviation, in a decreasing order of preference: The intra-laboratory standard deviation, the inter-laboratory standard deviation derived from method validation, and the inter-laboratory standard deviation derived from proficiency testing.The uncertainty of qualitative determinations is still under investigation, and will be covered by a separate ISO publication. Presented at AOAC Europe/Eurachem Symposium March 2005, Brussels, Belgium  相似文献   

5.
Ionic current rectification (ICR) based nanopipettes allow accurate monitoring of cellular behavior in single living cells. Herein, we proposed a 30 nm nanopipette functionalized with G‐quadruplex DNAzyme as an efficient biomimetic recognizer for ROS generation at subcellular level via the changes of current–voltage relationship. Taking advantages of the ultra‐small tip, the nanopipette could penetrate into a single living cell repeatedly or keep measuring for a long time without compromising the cellular functions. Coupled with precision nanopositioning system, generation of ROS in mitochondria in response to cell inflammation was determined with high spatial resolution. Meanwhile, the changes of aerobic metabolism in different cell lines under drug‐induced oxidative stress were monitored continuously. We believe that the ICR‐nanopipette could be developed as a powerful approach for the study of cellular activities via electrochemical imaging in living cells.  相似文献   

6.
The conceptual design of the O‐trap Fourier transform ion cyclotron resonance (FT‐ICR) cell addresses the speed of analysis issue in FT‐ICR mass spectrometry. The concept of the O‐trap includes separating the functions of ion excitation and detection between two different FT‐ICR cell compartments. The detection compartment of the O‐trap implements additional internal coaxial electrodes around which ions with excited cyclotron motion revolve. The expected benefits are higher resolving power and the lesser effect of the space charge. In this work we present the first experimental demonstration of the O‐trap cell and its features, including the high ion transfer efficiency between two distinct compartments of an ICR cell after excitation of the coherent cyclotron motion. We demonstrate that utilization of the multiple‐electrode detection in the O‐trap provides mass resolving power enhancement (achieved over a certain time) equal to the order of the frequency multiplication. In an O‐trap installed in a 5 T desk‐top cryogen‐free superconducting magnet, the resolving power of R = 80 000 was achieved for bradykinin [M + 2H]2+ (m/z 531; equivalent to 100 000 when recalculated for m/z 400) in 0.2 s analysis time (transient length), and R = 300 000 at m/z 531 for a 1 s transient. In both cases, detection on the third multiple of the cyclotron frequency was implemented. In terms of the acquisition speed at fixed resolving power, such performance is equivalent to conventional FT‐ICR detection using a 15 T magnet. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A novel set-up for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is reported for simultaneous infrared multiphoton dissociation (IRMPD) and electron-capture dissociation (ECD). An unmodified electron gun ensures complete, on-axis overlap between the electron and the photon beams. The instrumentation, design and implementation of this novel approach are described. In this configuration the IR beam is directed into the ICR cell using a pneumatically actuated mirror inserted into the ion-optical path. Concept validation was made using different combinations of IRMPD and ECD irradiation events on two standard peptides. The ability to perform efficient IRMPD, ECD and especially simultaneous IRMPD and ECD using lower irradiation times is demonstrated. The increase in primary sequence coverage, with the combined IRMPD and ECD set-up, also increases the confidence in peptide and protein assignments.  相似文献   

9.
Tricarbonyl(eta 5-cyclohexadienyl)iron(0) and dicarbonyl(triphenylphosphine)(eta 5-cyclo-hexadienyl)iron(0) were derivatized by attachment of an aminopropylsilyl link and covalently attached to fumed silica particles. The fumed silica was coated onto the ZnSe element of an attenuated total reflection (ATR) cell for Fourier transform infrared (FTIR) spectroscopic analysis. The immobilized organometalcarbonyl probe groups are shown to retain their capacity to function as a key element of a molecular sensor assembly and the nu(CO) bands of the two probe groups were interrogated to calibrate the responses for 0-5% levels of dodecane in cyclohexanol to within +/- 0.1%. The potential for dual sensing is described and the simultaneous monitoring of two discrete regions of a dynamically varying inhomogeneous system is reported for the determination of dodecane in cyclohexanol as solutions mix across a permeable barrier in the ATR cell.  相似文献   

10.
BCR®-701: a review of 10-years of sequential extraction analyses   总被引:1,自引:0,他引:1  
A detailed quantitative analysis was performed on data presented in the literature that focused on the sequential extraction of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) from the certified reference material BCR-701 (lake sediment) using the three-step harmonized BCR(?) procedure. The accuracy of data reported in the literature, including precision and different measures of trueness, was assessed relative to the certified values for BCR-701. Forty data sets were accepted following extreme outlier removal, and statistically summarized with measures of central tendency, dispersion, and distribution form. In general, literature data were similar in their measurement precision to the expert laboratories used to certify the trace element contents in BCR-701. The overall median precision for literature reported data was 10% (range 6-19%), compared to certifying laboratories of 9% (range 4-33%). One measure of literature data trueness was assessed via a confirmatory approach using a robust bootstrap method. Only 22% of the comparisons indicated significantly different (all were lower) concentrations reported in the literature compared to certified values. The question of whether the differences are practically significant for environmental studies is raised. Bias was computed as a measure of trueness, and literature data were more frequently negatively biased, indicating lower concentrations reported in the literature for the six trace elements for the three-step sequential procedure compared to the certified values. However, 95% confidence intervals about the average bias for the 18 comparisons indicated only four instances when a mean bias of 0 (i.e., measured=certified) was not incorporated-suggesting statistical difference. Finally, Z-scores incorporating a Horwitz-type function were used to assess the general trueness of laboratory data. Of the 468 laboratory Z-score values computed, 92% were considered to be satisfactory, 5% were questionable, and 3% were unsatisfactory. A detailed examination of the methodology sections of the various studies showed that despite claiming adherence to the harmonized BCR sequential extraction protocol, significant deviations were commonly observed; particularly in moisture correction, sample mass, centrifugation specifics, shaking specifics, and incorporation of filtration. It is likely that failure to strictly adhere to the protocol adversely impacted accuracy, by increasing the degree of imprecision and resulting in more discrepant trueness values.  相似文献   

11.
12.
A minimum thickness gate valve design for mass spectrometry is described in detail. The ion optics required to transmit ions from the source to the ICR cell are integrated into the design to minimize fringe field effects on the ions as they travel through the gate valve. The total thickness of the complete gate valve assembly is 1.03 in. (26.2 mm) with a maximum fringe field distance of 0.065 in. (1.7 mm). The gate valve is able to maintain a vacuum of <10(-10) mbar at the ICR cell when the source is vented to atmosphere and the estimated ion transfer efficiency is >95%.  相似文献   

13.
A novel Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been developed for improved biomolecule analysis. A flared metal capillary and an electrodynamic ion funnel were installed in the source region of the instrument for improved ion transmission. The transfer quadrupole is divided into 19 segments, with the capacity for independent control of DC voltage biases for each segment. Restrained ion population transfer (RIPT) is used to transfer ions from the ion accumulation region to the ICR cell. The RIPT ion guide reduces mass discrimination that occurs as a result of time-of-flight effects associated with gated trapping. Increasing the number of applied DC bias voltages from 8 to 18 increases the number of ions that are effectively trapped in the ICR cell. The RIPT ion guide with a novel voltage profile applied during ion transfer provides a 3- to 4-fold increase in the number of ions that are trapped in the ICR cell compared with gated trapping for the same ion accumulation time period. A novel ICR cell was incorporated in the instrument to reduce radial electric field variation for ions with different z-axis oscillation amplitudes. With the ICR cell, called trapping ring electrode cell (TREC), we can tailor the shape of the trapping electric fields to reduce dephasing of coherent cyclotron motion of an excited ion packet. With TREC, nearly an order of magnitude increase in sensitivity is observed. The performance of the instrument with the combination of RIPT, TREC, flared inlet, and ion funnel is presented.  相似文献   

14.
Brief history and current status of activation analysis in Korea are described. About 120 papers have been published since the first paper was reported in 1960. They are sorted out into 5 consecutive periods according to the publication year, and typical feature of each period is described.  相似文献   

15.
《中国化学会会志》2017,64(5):503-521
In this paper, we present a thorough investigation of the conformational space to characterize all possible gas‐phase structures of the neutral L‐serine, L‐cysteine, and L‐aspartic acid molecules. A total of 120 trial structures were generated for L‐aspartic acid and 96 trial structures for L‐serine and L‐cysteine by combining all internal single‐bond rotamers. Various combinations of the Hartree–Fock and density functional theory/B3LYP methods with different bases were used to optimize all possible trial structures. The theoretical studies on the structure, harmonic vibrational spectra, and molecular properties of these amino acids are presented. The assignments of the calculated wave numbers resulting from potential energy distributions were performed using the VEDA 4 program to allow a good interpretation of the theoretical vibrational spectra of the title compounds. The fundamental harmonic frequencies were found to be in good agreement with data in the literature. A natural bond orbital analysis was performed to investigate the charge delocalization throughout the molecules for the three test compounds. Moreover, an extensive discussion of the highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap as well as other related molecular properties are reported.  相似文献   

16.
17.
For the study of ionized van der Waals cluster ions an instrument is presented, which consists of a supersonic beam cluster source coupled to an ICR spectrometer with external ion source. The neutral van der Waals clusters are generated by supersonic expansion and ionized by electron impact in the external source. The cluster ions are extracted at right angle to the neutral cluster beam and fly collision-free parallel to the magnetic field direction into the differentially pumped ICR cell. For the ion transfer, an improved lens system is presented. The cluster ion transfer lens system is capable of focusing ions with energies of a few eV perpendicular to the magnetic field direction through the differential pumping orifice. The ions are injected into the ICR cell with a trap barrier pulse, ion accumulation is possible. With this system the first ICR spectra of small cluster ions of carbon dioxide are obtained.  相似文献   

18.
Characterizing chemical changes within individual cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Analyzing biological systems with imaging and profiling mass spectrometry (MS) has gained popularity in recent years as a method for creating chemical maps of biological samples. To obtain mass spectra that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell culture components are removed from the cell surface and that the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging/profiling MS that removes the majority of the interfering species derived from the cellular growth medium, preserves the basic morphology of the cells, and allows chemical profiling of the diffusible elements of the cytosol. Using this method, we are able to reproducibly analyze cells from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique makes possible routine imaging/profiling MS analysis of individual cultured cells, allowing for understanding of molecular processes within individual cells.  相似文献   

19.
20.
Laser Raman (3500-50 cm(-1)) and IR (4000-400 cm(-1)) spectral measurements have been made on the laboratory prepared solid 3-acetylcoumarin. Molecular electronic energy, equilibrium geometrical structure and harmonic vibrational spectra have been computed at the RHF/6-31G(d,p) and B3LYP/6-31G(d,p) levels of theory. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The B3LYP/6-31G(d,p) geometrical parameters, and frequencies of the C=O in the pyrone and acetyl group are in good agreement with experiment. The difference in the frequencies due to the two carbonyl groups, 50 cm(-1), which is attributed to the conjugation effect, is accounted for by the B3LYP to be 56cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号