首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
This study developed generalized mathematical models to describe the motion of fluids in porous media, and applied these models to harmonic excitation applications. The problem of fluid flow in small channels of a periodic elastic solid matrix was studied at the pore scale, and the homogenization technique was applied to predict the macroscopic behavior of reservoirs. Based on the homogenization study, five separate characteristic macroscopic models were identified according to the relation between a length scale parameter and a property contrast number. These five models can be used to interpret the corresponding responses of a saturated porous medium. The relation to existing theories, such as Darcy's law, the Telegrapher's equation and Biot's theory, was investigated. The numerical results and applications are presented in Part II of the study.  相似文献   

2.
Homogenization techniques are used to upscale from pore to laboratory or field scale viscous and second grade nonNewtonian flow in a porous medium. Nonlinear forms of Darcy's law are obtained and analysed under a series of symmetry properties. The general case of displacement of one of these fluids by another with different properties is considered and a linear stability analysis is performed.  相似文献   

3.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role in the dynamics of the front. In particular, when the mobility ratio is favorable, it induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this companion paper, we focus on flows in isotropic media. Our results predict the dynamics of the water–oil front for favorable mobility ratios. We show that the statistics of the front reach a stationary limit, as a function of the geostatistics of the permeability field and of the mobility ratio evaluated across the front. Results of numerical experiments and Monte-Carlo analysis confirm our predictions.  相似文献   

4.
The Buckingham–Reiner models for the one-dimensional flow of a Bingham fluid along a uniform pipe or channel are well-known, but are modified here to cover much more general one-dimensional configurations. These include selections of channels with different widths, and five different probability density functions describing distributions of channel widths. It is found that the manner in which breakthrough occurs at the threshold pressure gradient depends very strongly on the type of distribution of pores and that a pseudo-threshold pressure gradient, which might be inferred from measurements of flow at relatively high pressure gradients, may be more than twice the magnitude of the true threshold gradient.  相似文献   

5.
A three-scale theory of swelling clay soils is developed which incorporates physico-chemical effects and delayed adsorbed water flow during secondary consolidation. Following earlier work, at the microscale the clay platelets and adsorbed water (water between the platelets) are considered as distinct nonoverlaying continua. At the intermediate (meso) scale the clay platelets and the adsorbed water are homogenized in the spirit of hybrid mixture theory, so that, at the mesoscale they may be thought of as two overlaying continua, each having a well defined mass density. Within this framework the swelling pressure is defined thermodynamically and it is shown to govern the effect of physico-chemical forces in a modified Terzaghi's effective stress principle. A homogenization procedure is used to upscale the mesoscale mixture of clay particles and bulk water (water next to the swelling mesoscale particles) to the macroscale. The resultant model is of dual porosity type where the clay particles act as sources/sinks of water to the macroscale bulk phase flow. The dual porosity model can be reduced to a single porosity model with long term memory by using Green's functions. The resultant theory provides a rational basis for some viscoelastic models of secondary consolidation.  相似文献   

6.
We investigate a two-dimensional network simulator that models the dynamics of two-phase immiscible bulk flow where film flow can be neglected. We present a method for simulating the detailed dynamical process where the two phases are allowed to break up into bubbles, and bubbles are allowed to merge together. The notions of drainage and imbibition are not adequate to describe this process since there is no clear front between the fluids. In fact, the simulator is constructed so that one can study the behaviour of the system far from inlets and outlets, where the two fluids have been mixed together so much that all initial fronts have broken up. The simulator gives the fractional flow as a function of the saturation of each of the fluids. For the case of two fluids with equal viscosity, we classify flow regimes that are parametrized by the capillary number.  相似文献   

7.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role on the dynamics of the front. In particular, when the mobility ratio is favorable, the viscous coupling induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this first paper, we focus on flows in stratified reservoirs, with stratification parallel to the mean flow. Our results allow to predict the evolution of large Fourier mode of the front, and the emergence of a stationary front, for favorable mobility ratios. Numerical experiments confirm our predictions. Our approach is applied to downscaling. Extension of our theory to isotropic media is presented in the companion paper.  相似文献   

8.
本文用高精度的压差传感器和高速度的数据采集设备同时测量出油水两相流体在多孔介质流动时产生的较大压力降和微小压力脉动,应用自行研制的大型数据处理软件对恒流速水驱油的两相渗流压力脉动实验数据进行了分析,发现不同阶段压力脉动具有明显的频谱特性和时间相关特性的不同,在第三阶段(油为主,水增加阶段)谱能增加最大,时间正相关程度最强。  相似文献   

9.
数值求解非均匀介质中的输运问题广泛应用于科学计算和工程领域.介质的强非均匀性给相关问题的准确求解带来极大的困难.近年来,本课题组将有限分析法拓展到该领域,建立了非均匀介质中输运问题的有限分析法.该算法基于网格奇点邻域内类拉普拉斯方程局部解析解构建,算法具有很高的精度,且不依赖于介质的非均匀性强度.不管相邻网格传导率差异如何,仅需对原始网格进行很少地细分就可以获得非常准确的计算结果,因此与其他传统数值算法相比,可以大幅提高计算精度和效率.该算法可广泛应用于求解非均匀多孔介质中的渗流、复合材料中的热传导及电场分布等问题.  相似文献   

10.
11.
The purpose of this paper is to investigate the effect of vertical throughflow on the onset of bioconvection in a suspension of gyrotactic microorganisms. A dilute suspension of gyrotactic microorganisms in a shallow system that consists of superimposed fluid and porous layers is considered. A linear instability analysis of this problem is performed and the Galerkin method is utilized to solve the eigenvalue problem. The analysis leads to an equation for the critical Rayleigh number. It is shown that the vertical throughflow stabilizes the system.  相似文献   

12.
It is well known that the relationship between capillary pressure and saturation, in two-phase flow problems demonstrates memory effects and, in particular, hysteresis. Explicit representation of full hysteresis with a myriad of scanning curves in models of multiphase flow has been a difficult problem. A second complication relates to the fact that P cS relationships, determined under static conditions, are not necessarily valid in dynamics. There exist P cS relationships which take into account dynamic effects. But the combination of hysteretic and dynamic effects in the capillary relationship has not been considered yet. In this paper, we have developed new models of capillary hysteresis which also include dynamic effects. In doing so, thermodynamic considerations are employed to ensure the admissibility of the new relationships. The simplest model is constructed around main imbibition and drainage curves and assumes that all scanning curves are vertical lines. The dynamic effect is taken into account by introducing a damping coefficient in P cS equation. A second-order model of hysteresis with inclined scanning curves is also developed. The simplest version of proposed models is applied to two-phase incompressible flow and an example problem is solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号