首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct method for determining the cellulose content of biomass residues resulting from simultaneous saccharifiaction and fermentation (SSF) experiment has been developed and evaluated. The method improves on classical cellulose assays by incorporating the enzymatic removal of yeast glucans from the biomass residue prior to acid hydrolysis and subsequent quantification of cellulose-derived glucose. An appropriate cellulasefree, commercially available, yeast-lysing enzyme preparation fromCytophaga was identified. A freeze-drying step was identified as necessary to render the SSF yeast cells susceptible to enzymatic lysis. The method was applied to the analysis of cellulose and yeast-associated glucans in SSF residues from three pretreated feedstocks; hybrid poplar, switchgrass, and cornstover. Cellulose assays employing the lysing-enzyme preparation demonstrated relative errors up to 7.2% when yeast-associated glucans were not removed prior to analysis of SSF residues. Enzymatic lysis of SSF yeast cells may be viewed as a general preparatory procedure to be used prior to subsequent chemical and physical analysis of SSF residues. Oregon State University Agricultural Experiment Station Technical Publication Number 10977.  相似文献   

2.
The relative toxicity of the combined nonxylose components in prehydrolysates derived from three different lignocellulosic biomass feedstocks was determined. One woody (poplar) and two herbaceous (corn stover and switchgrass) feedstocks were dilute-acid pretreated under temperature and acid conditions chosen to optimize xylose recovery in the liquid prehydrolysate; xylose yields averaged 96,89,and 87% of theoretical for switchgrass,corn stover,and poplar,respectively. Prehydrolysates from each feedstock were neutralized,adjusted to equivalent xylose concentrations,and bioassayed for toxicity,using a standardized fermentation protocol withPichia stipitis NRRL 11545. Full time-courses for ethanol production (30-60 h) clearly illustrate the distinct inhibitory effects of prehydrolysates from different feedstocks. The relative toxicity of the prehydrolysates,ranked in order of decreasing toxicity,is poplar-derived prehydrolysates > switchgrass-derived prehydrolysates > corn stover-derived prehydrolysates. The inhibition of ethanol production appeared to be the result of a general slowdown of yeast metabolism,rather than the result of the production of alternative, nonethanol end products. Ethanol yields averaged 74,83,and 88% of control values for poplar,switchgrass,and corn stover prehydrolysates, respectively. Volumetric ethanol productivities (g ethanol L/h) averaged 32,70,and 102% of control values for poplar,switchgrass,and corn stover prehydrolysates,respectively. Ethanol productivities correlated closely with acetate concentrations in the prehydrolysates; however, regression lines correlating acetate concentrations and ethanol productivities were found to be feedstock-dependent. Oregon State University Agricultural Experiment Station Technical Publication Number 11114  相似文献   

3.
Aqueous-ammonia-steeped switchgrass was subject to simultaneous saccharification and fermentation (SSF) in two pilot-scale bioreactors (50- and 350-L working volume). Switchgrass was pretreated by soaking in ammonium hydroxide (30%) with solid to liquid ratio of 5 L ammonium hydroxide per kilogram dry switchgrass for 5 days in 75-L steeping vessels without agitation at ambient temperatures (15 to 33 °C). SSF of the pretreated biomass was carried out using Saccharomyces cerevisiae (D5A) at approximately 2% glucan and 77 filter paper units per gram cellulose enzyme loading (Spezyme CP). The 50-L fermentation was carried out aseptically, whereas the 350-L fermentation was semiaseptic. The percentage of maximum theoretical ethanol yields achieved was 73% in the 50-L reactor and 52–74% in the 350-L reactor due to the difference in asepsis. The 350-L fermentation was contaminated by acid-producing bacteria (lactic and acetic acid concentrations approaching 10 g/L), and this resulted in lower ethanol production. Despite this problem, the pilot-scale SSF of aqueous-ammonia-pretreated switchgrass has shown promising results similar to laboratory-scale experiments. This work demonstrates challenges in pilot-scale fermentations with material handling, aseptic conditions, and bacterial contamination for cellulosic fermentations to biofuels.  相似文献   

4.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.  相似文献   

5.
Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial β-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.  相似文献   

6.
Conversion of food wastes into lactic acid by simultaneous saccharification and fermentation (SSF) was investigated. The process involves saccharification of the starch component in food wastes by a commercial amylolytic enzyme preparation (a mixture of amyloglucosidase, α-amylase, and protease) and fermentation by Lactobacillus delbrueckii. The highest observed overall yield of lactic acid in the SSF was 91% of theoretical. Lactic acid concentration as high as 80 g/L was attainable in 48 h of the SSF. The optimum operating conditions for the maximum productivity were found to be 42°C and pH 6.0. Without supplementation of nitrogen-containing nutrients, the lactic acid yield in the SSF decreased to 60%: 27 g/L of lactic acid from 60 g/L of food waste. The overall performance of the SSF, however, was not significantly affected by the elimination of mineral supplements.  相似文献   

7.
Astrain of Clostridium thermoaceticum (ATCC 49707) was evaluated for its homoacetate potential. This thermophilic anaerobe best produces acetate from glucose at pH 6.0 and 59°C with a yield of 83% of theoretical. Enzyme hydrolysis of two substrates, a-cellulose and a pulp mill sludge, yielded 68% and 70% digestion, respectively. The optimum conditions for the simultaneous saccharification and fermentation (SSF) were substrate dependent: 55°C, pH 6.0 for α-cellulose, and 55°C, pH 5.5 for the pulp mill sludge. In the SSF with α-cellulose, the overall yield of acetate was strongly influenced by the enzyme loading. In a fed-batch operation of SSF with α-cellulose, an overall acetic acid yield of 60 wt% was obtained. Among the factors limiting the yields were incomplete digestion by the enzyme and the end-product inhibition. In the SSF of pulp mill sludge, inhibitors present in the sludge severely limited bacterial action. A large accumulation of glucose developed over the entire process, changing the intended SSF operation into a separate hydrolysis and fermentation operation. Despite a long lag phase of microbial growth, a terminal yield of 85% was obtained with this substrate.  相似文献   

8.
Experimental results are presented for continuous conversion of pretreated hardwood flour to ethanol. A simultaneous saccharification and fermentation (SSF) system comprised ofTrichoderma reesei cellulase supplemented with additional β-glucosidase and fermentation bySaccharomyces cerevisiae was used for most experiments, with data also presented for a direct microbial conversion (DMC) system comprised ofClostridium thermocellum. Using a batch SSF system, dilute acid pretreatment of mixed hardwood at short residence time(10 s, 220°C, 1% H2SO4) was compared to poplar wood pretreated at longer residence time (20 min, 160°C, 0.45% H2SO4). The short residence time pretreatment resulted in a somewhat (10–20%) more reactive substrate, with the reactivity difference particularly notable at low enzyme loadings and/or low agitation. Based on a preliminary screening, inhibition of SSF by byproducts of short residence time pretreatment was measurable, but minor. Both SSF and DMC were carried out successfully in well-mixed continuous systems, with steady-state data obtained at residence times of 0.58–3 d for SSF as well as 0.5 and 0.75 d for DMC. The SSF system achieved substrate conversions varying from 31% at a 0.58-d residence time to 86% at a 2-d residence time. At comparable substrate concentrations (4–5 g/l) and residence times (0.5–0.58 d), substrate conversion in the DMC system (77%) was significantly higher than that in the SSF system (31%). Our results suggest that the substrate conversion in SSF carried out in CSTR is relatively insensitive to enzyme loading in the range 7–25 U/g cellulose and to substrate concentration in the range of 5–60 g/L cellulose in the feed.  相似文献   

9.
Wheat straw was pretreated with dilute (0.5%) sulfuric acid at 140°C for 1 h. Pretreated straw solids were washed with deionized water to neutrality and then stored frozen at –20°C. The approximate composition of the pretreated straw solids was 64% cellulose, 33% lignin, and 2% xylan. The cellulose in the pretreated wheat straw solids was converted to ethanol in batch simultaneous saccharification and fermentation experiments at 37°C using cellulase enzyme fromTrichoderma reesei (Genencor 150 L) with or without supplementation with β–glucosidase fromAspergillus niger (Novozyme 188) to produce glucose sugar and the yeastSaccharomyces cerevisiae to ferment the glucose into ethanol. The initial cellulose concentrations were adjusted to 7.5, 10, 12.5, 15, 17.5, and 20% (w/w). Since wheat straw particles do not form slurries at these concentrations and cannot be mixed with conventional impeller mixers used in laboratory fermenters, a simple rotary fermenter was designed and fabricated for these experiments. The results of the simultaneous saccharification and fermentation (SSF) experiments indicate that the cellulose in pretreated wheat straw can be efficiently fermented into ethanol for up to a 15% cellulose concentration (24.4% straw concentration).  相似文献   

10.
Simultaneous saccharification and fermentation (SSF) of switchgrass was performed following aqueous ammonia pretreatment. Switchgrass was soaked in aqueous ammonium hydroxide (30%) with different liquid–solid ratios (5 and 10 ml/g) for either 5 or 10 days. The pretreatment was carried out at atmospheric conditions without agitation. A 40–50% delignification (Klason lignin basis) was achieved, whereas cellulose content remained unchanged and hemicellulose content decreased by approximately 50%. The Sacccharomyces cerevisiae (D5A)-mediated SSF of ammonia-treated switchgrass was investigated at two glucan loadings (3 and 6%) and three enzyme loadings (26, 38.5, and 77 FPU/g cellulose), using Spezyme CP. The percentage of maximum theoretical ethanol yield achieved was 72. Liquid–solid ratio and steeping time affected lignin removal slightly, but did not cause a significant change in overall ethanol conversion yields at sufficiently high enzyme loadings. These results suggest that ammonia steeping may be an effective method of pretreatment for lignocellulosic feedstocks.  相似文献   

11.

Previous shake flask and stirred tank evaluations of temperature tolerant (37–43°C) yeasts in simultaneous saccharification and fermentation (SSF) on Sigmacell-50 cellulose substrates to ethanol have identified several good microorganisms for further SSF studies (27). Of these, the glucose fermenting yeastCandida acidothermophilum, C. brassicae, Saccharomyces cerevisiae, S. uvarum, and a mixed culture of the cellobiose fermenting yeastBrettanomyces clausenii withS. cerevisiae as a control were chosen for shake flask SSF screening experiments with pretreated wheat straw. This study indicates that theSaccharomyces strainscerevisiae anduvarum, give very good performance at high cellulase loadings or when supplemented with Novo-188 β-glucosidase. In fact, with the higher enzyme loadings these yeast will give complete conversion of cellulose to ethanol. Yet at the lower, more economical enzyme loadings, the mixed culture ofBrettanomyces clausenii andS. cerevisiae performs better than any single yeast.

  相似文献   

12.

A new saccharification assay has been devised, in which a continuously buffer-swept membrane reactor is used to remove the solubilized saccharification products, thus allowing high extents of substrate conversion without significant inhibitory effects from the buildup of either cellobiose or glucose. This diafiltration saccharification assay (DSA) can, therefore, be used to obtain direct measurements of the performance of combinations of cellulase and substrate under simulated SSF conditions, without the saccharification results being complicated by factors that may influence the subsequent fermentation step. This assay has been used to compare the effectiveness of commercial and special in-house-producedTrichoderma reeSci. cellulase preparations in the saccharification of a standardized microcrystalline (Sigmacell) substrate and a dilute-acid pretreated lignocellulosic substrate. Initial results strongly suggest that enzyme preparations produced in the presence of the targeted lignocellulosic substrate will saccharify that substrate more effectively. These results call into question the widespread use of the “filter paper assay” as a reliable predictor of enzyme performance in the extensive hydrolysis of substrates that are quite different from filter paper in both physical properties and chemical composition.

  相似文献   

13.
Pretreatment of yellow poplar sawdust by pressure cooking in water   总被引:11,自引:0,他引:11  
The pretreatment of yellow poplar wood sawdust using liquid water at temperatures above 220°C enhances enzyme hydrolysis. This paper reviews our prior research and describes the laboratory reactor system currently in use for cooking wood sawdust at temperatures ranging from 220 to 260°C. The wood sawdust at a 6–6.6% solid/liquid slurry was treated in a 2 L, 304 SS, Parr reactor with three turbine propeller agitators and a proportional integral derivative (PID) controller, which controlled temperature within ±1°C. Heat-up times to the final temperatures of 220, 240, or 260°C were achieved in 60–70 min. Hold time at the final temperature was less than 1 min. A serpentine cooling coil, through which tap water was circulated at the completion of the run, cooled the reactor’s contents within 3 min after the maximum temperature was attained. A bottoms port, as well as ports in the reactor’s head plate, facilitated sampling of the slurry and measuring the pH, which changes from an initial value of 5 before cooking to a value of approx 3 after cooking. Enzyme hydrolysis gave 80–90% conversion of cellulose in the pretreated wood to glucose. Simultaneous saccharification and fermentation of washed, pretreated lignocellulose gave an ethanol yield that was 55% of theoretical. Untreated wood sawdust gave less than 5% hydrolysis under the same conditions.  相似文献   

14.
The kinetics of cellulose hydrolysis under extremely low acid (ELA) conditions (0.07 wt%) and at temperatures >200°C was investigated using batch reactors and bed-shrinking flow-through (BSFT) reactors. The maximum yield of glucose obtained from batch reactor experiments was about 60% for α-cellulose, which occurred at 205 and 220°C. The maximum glucose yields from yellow poplar feedstockswere substantially lower, falling in the range of 26–50%. With yellow poplar feedstocks, a large amount of glucose was unaccounted for at the latter phase of the batch reactions. It appears that a substantial amount of released glucose condenses with nonglucosidic substances. in liquid. The rate of glucan hydrolysis under ELA was relatively insensitive to temperature in batch experiments for all three substrates. This contradicts the traditional concept of cellulose hydrolysis and implies that additional factors influence the hydrolysis of glucan under ELA. Inexperiments using BSFT reactors, the glucose yields of 87.5, 90,3, and 90.8% were obtained for yellow poplar feedstocks at 205, 220, and 235°C, respectively. The hydrolysis rate for glucan was about three times higher with the BSFT than with the batch reactors. The difference of observed kinetics and performance data between the BSFT and the batch reactors was far above that predicted by the reactor theory.  相似文献   

15.
Fuel ethanol can be produced from softwood through hydrolysis in an enzymatic process. Prior to enzymatic hydrolysis of the softwood, pretreatment is necessary. In this study, two-step steam pretreatment employing dilute H2SO4 impregnation in the first step and SO2 impregnation in the second step, to improve the overall sugar and ethanol yield, was investigated. The first pretreatment step was performed under conditions of low severity (180°C, 10 min, 0.5% H2SO4) to optimize the amount of hydrolyzed hemicellulose. In the second step, the washed solid material from the first pretreatment step was impregnated with SO2 and pretreated under conditions of higher severity to make the cellulose more accessible to enzymatic attack, as well as to hydrolyze a portion of the cellulose. A wide range of conditions was used in the second step to determine the most favorable combination. The temperatures investigated were between 190 and 230°C, the residence times were 2, 5, and 10 min; and the SO2 concentration was 3%. The effect of pretreatment was assessed by both enzymatic hydrolysis of the solids and by simultaneous saccharification and fermentation (SSF) of the whole slurry, after the second pretreatment step. For each set of pretreatment conditions, the liquid fraction was also fermented to determine any inhibitory effects. Ethanol yield using the SSF configuration reached 66% of the theoretical value for pretreatment conditions in the second step of 210°C and 5 min. The sugar yield using the separate hydrolysis and fermentation configuration reached 71% for pretreatment conditions of 220°C and 5 min.  相似文献   

16.
Sequential Extrusion-Ozone Pretreatment of Switchgrass and Big Bluestem   总被引:1,自引:0,他引:1  
Pretreatment is one of the biggest challenges in utilizing lignocellulosic feedstocks to meet the mandatory requirements for biofuels around the world. Earlier researchers evaluated extrusion and ozone pretreatment separately and found that sugar recovery can be improved significantly from 15–20 to 40–75 % for different feedstocks. To further improve sugar recoveries, extrusion-ozone sequential pretreatment was explored. Accordingly, optimal extruded switchgrass (176?°C, 155 rpm, 20 % moisture, and 8 mm) and big bluestem (180?°C, 155 rpm, 20 % moisture, and 8 mm) at 25–75 % moisture content were exposed to an ozone flow rate of 37–365 mg/h for 2.5 to 10 min. Pretreated samples were then subjected to enzymatic hydrolysis to determine sugar recovery. Statistical analyses confirmed significant effects of the independent variables and their interactions on sugar recoveries for both feedstocks. Maximum glucose, xylose, and total sugar recovery of 66.4, 82.3, and 70.4 %, respectively, were obtained when a low-moisture (25 %) extruded switchgrass was ozonated for 2.5 min at a flow rate of 37 mg/h. Respectively, this represents increases of 3.42, 5.01, and 3.42 times that of the control. When big bluestem at 25 % moisture was extruded and then ozonated for 2.5 min at a flow rate of 365 mg/h, resulting glucose, xylose, and total sugar recoveries of 90.8, 92.2, and 87.5 %, respectively, were obtained. These represent increases of 4.5, 2.7, and 3.9 times than that of the control. It is also noteworthy that furfural and hydroxymethyl furfural were not detected in any of the pretreatments, and only low levels (0.14–0.18 g/l) of acetic acid were measured. The results show that sequential pretreatment using extrusion and ozone is an efficient way to improve sugar recovery from herbaceous biomass feedstocks.  相似文献   

17.
The production of fermentable sugars from rice hull was studied by dilute acid pretreatment and enzymatic saccharification. Rice hull (15%, w/v) was pretreated by 1% (v/v) sulfuric acid at high temperature (120∼160 °C) for 15, 30, 45, and 60 min, respectively. The maximum sugar concentration from rice hull in the prehydrolysate was obtained at 140 °C for 30 min, but the enzymatic saccharification yield from the corresponding pretreated rice hull is not high. To another aspect, the maximum enzymatic saccharification yield was achieved at 160 °C for 60 min, while the recovery of fermentable sugars was the poorest. To take account of fermentable sugars from pretreatment and enzymatic saccharification, the maximum yield of sugars was obtained only when rice hull was treated at 140 °C for 30 min. Under this condition, 72.5% (w/w) of all sugars generated from the raw material can be recovered. The kinetic study on the enzymatic saccharification of dilute acid pretreated rice hull was also performed in this work by a modified Michaelis–Menten model and a diffusion-limited model. After calculation by a linear and a non-linear regression analysis, both models showed good relation with the experimental results.  相似文献   

18.
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 °C, 20 FPU g−1 substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l−1 was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.  相似文献   

19.
Ethanol production from Jerusalem artichoke was studied using inulinase and Z.mobilis by simultaneous saccharification and fermentation (SSF) process. The SSF process showed higher ethanol yield and productivity than the acid or enzymatic prehydrolyzed two-step process. The optimum temperature and inulinase concentration for SSF were 35°C and 0.25% (v/w, 4.4 units/g of sugar), respectively. In order to operate the SSF process in a continuous mode, inulinase and Z.mobilis cells were coimmobilized in alginate beads, using chitin as a matrix for enzyme immobilization. The maximum ethanol productivity of the continuous SSF process was 55.1 g/L/h, with 55% conversion yield. At the conversion yield of 90%, the productivity was 32.7 g/L/h. The continuous SSF system could be operated stably over 2 wk with an ethanol concentration of 48.6 g/L (95% of theoretical yield).  相似文献   

20.
Simultaneous Saccharification and Fermentation (SSF) experiments were carried out on agricultural residues using culture filtrate of Sclerotium rolfsii, which produces high levels of cellulases and hemicellulases for the saccharification of rice straw and bagasse, and Candida shehatae--the D-xylose fermenting yeast, and Saccharomyces cerevisiae, both separately and in coculture, for fermenting the released sugars. The coculture system showed efficient utilization of hydrolyzed sugars with 30-38% and 10-13% increase in ethanol production as compared to C. shehatae and S. cerevisiae, respectively, when cultivated separately. SSF simulation studies were carried out using standard sugar mixtures of glucose, xylose, and cellobiose. Both organisms could not use cellobiose, whereas glucose was used preferentially. C. shehatae was capable of utilizing xylose in the presence of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号