首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004  相似文献   

2.
Microindentation hardness testing was applied to five types of highly-crosslinked ultrahigh molecular weight polyethylenes (UHMWPEs) for total joint replacements. UHMWPE's were crosslinked using the same total radiation dose (75 kGy; γ-radiation) either by the standard, single-step irradiation (one-step crosslinking) or by the newer, several-step irradiation (sequential crosslinking). Each irradiation step was followed by thermal treatment (annealing at 110 °C or remelting at 150 °C) in an inert atmosphere. We showed that: (i) the micromechanical properties were determined by the last thermal treatment step, while the number of irradiation cycles was insignificant and (ii) the values of microhardness, microcreep and microplasticity from the microindentation experiments were in excellent agreement with the changes of UHMWPE structure, characterized by IR and DSC. Statistical evaluation of the results, the agreement with theoretical predictions and the comparison with previous studies on similar systems demonstrated that microindentation was a reliable and sensitive method of UHMWPE characterization.  相似文献   

3.
The tribological properties and wear resistance under different action of composite materials based on of ultra-high-molecular-weight polyethylene (UHMWPE) and fillers of various types such as organomodified montmorillonite (MMT), graphite nanoplates (GNP), molybdenum disulfide, and shungite prepared via polymerization in situ are studied. According to the obtained results, the introduction of these fillers to UHMWPE in the amount of 0.4–7 wt % has almost no effect on the value of the coefficient of sliding friction on steel in the mode of dry friction. Composites with GNP, MoS2, and shungite are characterized by a significant (two- to threefold) increase in the wear resistance in the case of sliding friction on steel. The abrasive wear of composites in the case of friction on an abrasive paper is substantially affected by the type of filler, the use of MMT was the most effective for increasing the wear resistance of composites. In the case of a highspeed impact effect of water–sand suspensions all the studied composites are characterized by increased wear resistance in comparison with industrial UHMWPE at a low concentration of fillers and by an increase in the wear with the increase of the filler content.  相似文献   

4.
Polyethylene-polyethylene blend films were prepared by gelation/crystallization from semidilute solution by using ultrahigh molecular-weight (mw) polyethylene (UHMWPE) (mw=6×106) and low molecular weight polyethylene (LMWPE) (mw=4×104). The UHMWPE/LMWPE compositions chosen were 50/50, 67/33, and 91/9. Elongation was carried out in a hot oven at 115–130°C. The drawn films were exposed to an electron beam under nitrogen flow. Radiation doses chosen were 10, 20, 40, and 100 Mrad. crosslinking caused a significant effect in improving high temperature resistance for the blend film with draw ratio of 20 in the case of irradiation doses less than 20 Mrad. The elongation beyond 20 times and high doses beyond 20 Mrad hampered the crosslinking effect and the specimens were easily torn manually. This is thought to be due to the fact that the excess irradiation dose causes main chain scission apart from crosslinking.  相似文献   

5.
Chemical mechanical planarization (CMP), being the important technique of realizing the surface planarization, has already been widely applied in the microelectronic and computer industry. The abrasive size employed in the CMP, far less than that employed in the conventional grinding and material removal during CMP, is on the order of atoms or clusters of atoms and molecules. Classical continuum mechanics cannot give a reasonable explanation about the phenomenon in the CMP. Large‐scale classical molecular dynamics simulation of tribology interaction among nanoparticles and materials surface has been carried out to investigate the physical essence of surface planarization. The results show that simultaneous impact of several abrasive particles or the repeated impact of abrasive particles leads to material failure. For individual asperity contact in the CMP, non‐obvious Archard adhesive wear or abrasive wear is observed. The contact area is not entirely dependent upon the external pressure but also closely related to the relative position because of lateral motion between the particles and the substrate. The results also justify that no single wear mechanism dominates all operating conditions; different wear mechanisms operate with their relative importance changing as the sliding conditions change. As the slurry particles slide relative to the wafer surface, the atomic groups experience three stages, namely, interlock, elastic–plastic deformation and finally slip process; the surface planarization is mainly accomplished in the last two stages. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Acetabular cups for artificial hip joints were prepared by compression molding of ultrahigh molecular weight polyethylene in the presence of peroxide. Peroxide crosslinking led to a decrease in the degree of crystallinity, peak melting temperature, and recrystallization temperature, as well as decreased crystal perfection and size. Peroxide crosslinked cups were sterilized with gamma rays at room temperature in air atmosphere to an average dose of 3.4 Mrad. Irradiation produced further crosslinking in amorphous regions plus extensive chain scission of taut tie molecules and led to increased crystallinity and crystal perfection. A significant increase in carbonyl concentration was determined for irradiated specimens. In general, peroxide crosslinking reduces the effect of irradiation on the crosslinked network, because chemical crosslinking stabilizes chain fragments resulting from radiolytic scission and suppresses recrystallization of broken chains from amorphous regions. Wear rates were much lower for chemically crosslinked cups, which showed about one-fifth of the wear of control cups for the period from 0.5 to 1.0 million cycles. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
交联低密度聚乙烯交联程度表征方法的研究   总被引:2,自引:0,他引:2  
硅烷交联法和过氧化物交联法是聚乙烯交联改性的两种重要方法[1],以往的文献上通常都以凝胶含量来表征这两种方法制备的交联产物的交联程度[2~6],但是在实践中我们发现,凝胶含量基本相同的硅烷交联聚乙烯和过氧化物交联聚乙烯的性能存在着很大的差异,例如在70℃的二甲苯中凝胶含量为62%的过氧化物交联低密度聚乙烯(LDPE)的平衡溶胀比是相同凝胶含量的硅烷交联LDPE的4倍,150℃时凝胶含量为70%的硅烷交联聚乙烯的热延伸率比相同凝胶含量的过氧化物交联聚乙烯小三倍,而且二者的结晶行为和结晶度也有很大的…  相似文献   

8.
本文研究了端羧基乙烯基四氢呋喃-环氧丙烷液体共聚物(TVC-PTP)与甲基丙烯酸缩水甘油酯(GMA)的反应。观察了组成比,催化剂等对反应产物力学性能的影响。用红外光谱跟踪了这一反应过程,观察了乙烯基和环氧基的消失速度。用平衡溶胀法测定了交联聚合物单位体积内有效交联链的数目和交联点间平均分子量,观察了它们对交联聚合物力学性能的影响。  相似文献   

9.
By swelling to equilibrium and esr spin probe technique the changes in crosslinking density and polymer segment mobility in γ-irradiated polydimethylsiloxanes (PDMS) were determined in dependence of irradiation atmosphere and irradiation temperature. In comparison with the polymer samples irradiated in the presence of oxygen, the samples irradiated in vacuum showed in spite of a higher degree of crosslinking a higher mobility of the polymer segments. The discrepancy can be explained taking into account that irradiation in presence of oxygen generates polar side groups: -COOH, -CHO and -OH. Dipolar interactions and hydrogen donor acceptor interactions should contribute to the decreased mobility of polymer segments in presence of these groups.  相似文献   

10.
This article investigates irradiated and accelerated aged graphene oxide (GO)/ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites. The prepared GO/UHMWPE nanocomposites are gamma-irradiated at a high irradiation dose in a vacuum and then accelerated aging procedure is performed at 80°C in an air oven for 21 days. Irradiated and aged samples are characterized by Raman spectrum, Fourier transform infrared (FT-IR) spectrum, differential scanning calorimetry, contact angle, and gel content. Filling GO reduces the intensity of Raman spectrum of UHMWPE and irradiation or aging cannot affect vibrational modes of UHMWPE and GO/UHMWPE. The result of the FT-IR spectrum shows that UHMWPE and GO/UHMWPE basically have the same oxidation index values, whether with irradiation or accelerated aging. Irradiation or aging can slightly increase the melting temperature. GO, irradiation, or aging can significantly increase the crystallinity and improve wetting properties. In irradiated GO/UHMWPE, GO is able to maintain the efficiency of the cross-linking. However, after aging, the cross-linking density of GO/UHMWPE is reduced significantly. According to the above results, it is proposed that GO shows a very weak scavenging free radicals capacity in GO/UHMWPE composites and cannot display antioxidant capacity.  相似文献   

11.
In order to clarify the influence of temperature below freezing point on the tribo‐oxidation of steel–steel friction pairs, tribological behaviour of certain steel from ?55 °C to 20 °C was investigated using a ball‐on‐disk tribometer in a thermotank which could provide environment with constant temperature and humidity. The counterbody was a 3 mm GCr15 steel ball. The normal load was 0.5 ~ 2.5 N and the sliding velocity was 0.319 m/s. Worn surface on the steel, wear scar on the steel ball and wear debris were observed and analysed by SEM and EDS. It was found that the friction coefficient presents a sudden increase when the ambient temperature drop from 20 to ? 10 °C. This is caused by decrease of relative humidity. The friction coefficient maintains the same value when the temperature change is between ? 10 and ?55 °C. A drop of temperature from 20 to ?55 °C aggravated wear of the steel. Analysis on tribochemical reaction process indicates gradually weakened oxidation of wear debris along with a drop of temperature should account for the aggravation of wear. Furthermore, along with the drop in temperature, the worn surface became rougher and more structure fractures were formed on the friction track, which led to more severe abrasive wear of the steel. Drop of temperature increased abrasive wear but decreased adhesive wear. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Thermally induced phase separation (TIPS) has prompted a great deal of interest, especially as an effective approach to fabricate ultra-high molecular weight polyethylene (UHMWPE) microporous membranes. However, the existing utilized diluents for the TIPS process of UHMWPE suffer from environmental and health issues. Herein, we utilized low molecular weight polybutene (PB) bearing similar structure with liquid paraffin (LP) but inferior miscibility with UHMWPE relative to UHMWPE/LP blend, as a diluent for the TIPS process of UHMWPE. The phase separation behavior of UHMWPE/PB blends were investigated by the combination of rheological measurements, optical microscopy as well as differential scanning calorimeter (DSC). The results suggest that PB is fully miscible with UHMWPE at elevated temperature, but yielding a more sensitive phase separation behavior in respect to LP in TIPS process, because PB has weaker interaction with UHMWPE. The Jeziorny method analysis indicates that the crystallization mechanism of UHMWPE/LP blends is in line with that of UHMWPE/PB blends, which includes nucleation and growth as well as their dynamic competition. Moreover, compared to those of UHMWPE/LP blends, UHMWPE/PB blends display higher TIPS temperature and faster TIPS rate along with faster overall crystallization rate, further demonstrating that PB can accelerate phase separation rates and enhance the efficiency of TIPS process.  相似文献   

13.
Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to theses foams, imparts opitmum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine: building and insulation: packaging: domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203° C as the right blowing agent decomposition temperature. At a 22.7 kGy/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time.  相似文献   

14.
Poly(acrylic acid)(PAA) gel network with only chemical crosslinking and hydorophobically modified PAA(HM-PAA)gels with both chemical and physical crosslinking were synthesized by radical polymerization in tert-butanol,using ethylene glycol dimethacrylate (EGDMA) as crossliker,and 2-(N-ethylperfluorooctanesulfoamido)ethyl methacrylate (FMA),stearyl acrylate (SA) or lauryl acrylate (LA) as Hydrophobic comonomer respectively.The effcet of the fractions and the species of the hydrophobes on swelling properties of HM-PAA gels and the interaction of gels and surfactants were studied.The results showed that the swelling ratio of HM-PAA gels exhibited a sharp decrease with increasing hydrophobic comomomer comcentration,Which Could be sacribed to the formation of strong hydrophobic association among hydrophobic groups.It was proved that two kinds of binding mechanisms of surfactan/gel and different kinds of hydrophobic clusters existed in gels containing both physical and chemical networks.  相似文献   

15.
In this study, the effect of chemical crosslinking on the creep behavior of high-strength fibers, obtained by gel-spinning and subsequent hot-drawing of ultra-high molecular weight polyethylene (UHMWPE), is examined. In the first part of the paper, the general aspects of the creep behavior of these fibers are discussed. The second part deals with UHMWPE fibers that are crosslinked by means of a) chlorosulfonation and b) dicumyl peroxide treatment followed by UV irradiation. The latter technique leads to an improvement of the creep resistance of the UHMWPE fibers without affecting their high tensile strengths. In spite of the fact that the network formation is fairly high, the creep cannot be completely removed. The results indicate that the creep process in UHMWPE fibers is associated with a deformation mechanism in the crystalline regions of the fiber, which are not affected by chemical crosslinking.  相似文献   

16.
The change in oxidative degradation and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) samples was evaluated. The percentage of crystallinity, chemical composition, and wetting properties were performed on different UHMWPE samples. Experimental results showed that the percentage of crystallinity and O/C ratio increased after immersion in simulated body fluids (SBF) for 5 years, and this resulted in lower mechanical properties. A coarse surface quality of UHMWPE surface caused lower contact angle and higher initial friction coefficient after the coeffect of force and SBF, but other mechanical properties changed little. The wear mechanism changed when immersed in SBF for 5 years.  相似文献   

17.
Elastomeric dynamic seals are components to prevent or to limit lubricant leakage in machinery. Nevertheless, they wear away under certain working conditions. Mostly, wear exists by starvation of lubricant film (two-body abrasion) and interaction with hard debris (three-body abrasion). This work aims to propose a suitable test methodology toward determining two-body and three-body abrasive wear rates of elastomers by using a TE66 Micro-Scale Abrasion Tester. In the tests, sections of silicone rubber were used. The experiments were divided in two parts. Firstly, dry runs were carried out replicating the two–body abrasion mechanism. Secondly, trials were run using two different media (contaminated oil and slurry) to reproduce three-body abrasive wear. Large viscoelastic deformations were generated in the samples and then they were considered for the wear estimation. In conclusion, the method shows advantages which make it suitable as an alternative test to obtain the wear behavior of sealing elastomers.  相似文献   

18.
Polybutadiene latex (PBL) vulcanization induced by 60Co radiation and the influence of dose on crosslinking were investigated. Morphology and particle size distribution were examined by AFM and a particle size analyzer. The casting films were characterized for their swelling and mechanical properties as a function of dose. The particle size, swelling and tensile properties decreased with dose, while gel fraction and storage modulus increased. The PBL fits well with the Charlesby–Pinner equation in the radiation dose, up to 200 kGy.  相似文献   

19.
pH and ionic sensitive interpenetrating polymer network (IPN) complex films based on chitosan (CS) and carboxymethyl chitosan (CM-CS) were prepared by using glutaraldehyde as crosslinking agent. Its structure was characterized by FT-IR, which indicated that the IPN was formed. The films were studied by swelling, weight loss with time, and release of coenzyme A (CoA). It was found that the IPN films were sensitive to pH and ionic strength of the medium. The cumulative release rate of CoA decreased with CoA loading content, ionic strength or crosslinking agent increasing. The composition of the IPN films and pH of release medium also had significant effect on the release of CoA. The differences in the rates and amounts of released CoA may be attributed to the swelling behavior, the degradation of films, and interaction between drug molecule and polymer matrix. These results suggested CS/CM-CS IPN films could be used as drug delivery carrier.  相似文献   

20.
The melting and the crystallization of-irradiated (doses: 0–6Mrad) ultra-high molecular weight nascent polyethylene (UHMWPE) and high density nascent polyethylene with normal molecular weight (NMWPE) were investigated by DSC. The heat of melting of the nascent UHMWPE (DSC degree of crystallinity, respectively) increases up to a dose of 3 Mrad, after which it slightly decreases. The heat of the second melting of UHMWPE and of the first and second melting of NMWPE increases slightly up to a dose of 3 Mrad, after which it does not change. The X-ray degree of crystallinity of the nascent non-irradiated and irradiated polymers was 0.62±0.02. The calorimetric crystallinity was compared to the X-ray one. The results show that radiation does not affect the polymer crystallinity, but influences the thermodynamic heat of melting. The increase ofH m vs. dose in UHMWPE is explained in terms of processes of tie molecule scission within the amorphous regions and on the surface of the crystals, which predominate over crosslinking up to a dose of 3 Mrad. That leads to an increase in the conformational mobility of the molecules and to an increase in the enthalpy, according to Peterlin's formula. The scission of the chains at the points of entangling of the tie molecules leads to a decrease in the temperature and to an increase in the enthalpy of crystallization of UHMWPE vs. dose. In NMWPE these effects are considerably weaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号