首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A multi‐mycotoxin method was developed for the simultaneous determination of trichothecenes (nivalenol, deoxynivalenol, 3‐acetyldeoxynivalenol, 15‐acetyldeoxynivalenol, neosolaniol, fusarenon‐X, diacetoxyscirpenol, HT‐2 toxin, T‐2 toxin), aflatoxins (aflatoxin‐B1, aflatoxin‐B2, aflatoxin‐G1 and aflatoxin‐G2), Alternaria toxins (alternariol, alternariol methyl ether and altenuene), fumonisins (fumonisin‐B1, fumonisin‐B2 and fumonisin‐B3), ochratoxin A, zearalenone, beauvericin and sterigmatocystin in sweet pepper. Sweet pepper was extracted with ethyl acetate/formic acid (99:1, v/v). After splitting up the extract, two‐thirds of the extract was cleaned up using an aminopropyl column followed by an octadecyl column. The remaining part was cleaned up using a strong anion‐exchange column. After recombination of both cleaned parts of the sample extract, the combined solvents were evaporated and the residue was dissolved in mobile phase; 20 µL was injected into the chromatographic system, so only one run was used to separate and detect the mycotoxins in positive electrospray ionization using selected reaction monitoring. The samples were analyzed with a Micromass Quattro Micro triple quadrupole mass spectrometer (Waters, Milford, MA, USA). The mobile phase consisted of variable mixtures of water and methanol, 1% acetic acid and 5 mM ammonium acetate. The limits of detection of the multi‐mycotoxin method varied from 0.32 µg.kg?1 to 42.48 µg.kg?1. The multi‐mycotoxin liquid chromatography/tandem mass spectrometry (LC/MS/MS) method fulfilled the method performance criteria required by the Commission Regulation (EC) No 401/2006. Sweet peppers inoculated by Fusarium species were analyzed using the developed method. Beauvericin (9–484 µg.kg?1) and fumonisins (fumonisin‐B1 up to 4330 µg.kg?1, fumonisin‐B2 up to 4900 µg.kg?1, and fumonisin‐B3 up to 299 µg.kg?1) were detected. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and specific method using reversed‐phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) was investigated, which allowed the determination of residues of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in soybean samples. An aqueous extraction with liquid‐liquid partition followed by protein precipitation was performed before the LC/MS/MS determination. The quantitation of glyphosate and AMPA was performed in positive and negative ESI mode, respectively, using the multiple reaction monitoring (MRM) mode with three transitions for each analyte to enhance the specificity of the method and avoid false positives. The methodology reported in this work is capable of detecting residues of glyphosate and AMPA in soybean samples with limits of quantification of 0.30 and 0.34 mg kg?1, respectively. This alternative method has throughput advantages such as simpler sample preparation and faster chromatographic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Liquid chromatography (LC) combined with tandem mass spectrometry (MS/MS), based on the use of a hybrid quadrupole‐time‐of‐flight mass analyzer, was used to investigate the reactivity of nine fungicides in free chlorine‐containing water samples. Three of the selected compounds (fenhexamid, FEN; pyrimethanil, PYR; and cyprodinil, CYP) displayed a poor stability in presence of moderate chlorine levels; thus, the effects of different parameters on their half‐lives (t1/2) were evaluated. Sample pH, bromide traces, and the water matrix affected their relative stabilities. Despite such variations, the three fungicides are degraded at significant rates not only in ultrapure, but also in surface water spiked with chlorine levels up to 2 µg ml?1, and when mixed with chlorinated tap water, generating several transformation products (TPs). The time‐course of precursor species and their TPs was followed in the LC‐MS mode, using the information contained in accurate, full scan mass spectra (MS) to propose the empirical formulae of TPs. Thereafter, their ion product scan (MS/MS) spectra were considered to set their chemical structures; allowing, in some cases, to distinguish between isomeric TPs. The reaction pathway of FEN, the less stable fungicide, involved just an electrophilic substitution of hydrogen per chlorine, or bromine, and cleavage of the molecule to render an amide. PYR and CYP shared common reaction routes consisting of halogenation, hydroxylation, and condensation processes leading to complex mixtures of TPs, which were relatively stable to further transformations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A multiresidue and multiclass method for the simultaneous determination of more than 350 compounds including pesticides, biopesticides and veterinary drugs in different meat matrices (beef, pork and chicken) by ultra‐high performance liquid chromatography coupled to Orbitrap MS has been developed. In the present study, the determination of fragments was accomplished as an essential tool for a reliable identification of compounds using high resolution MS. To obtain these fragments, different strategies have been carried out in order to ensure an appropriate fragment assignment and identification. The analytical method is suitable for qualitative analysis, and it was also evaluated for quantitative analysis. Generic extraction conditions were optimized, obtaining adequate recovery and precision values for most of the studied analytes (>290). The limits of detection ranged from 2 to 16 µg kg?1. Limits of quantification were 10 µg kg?1 with the exception of few compounds with a higher value (50 or 100 µg kg?1). Limits of identification were also established, and they ranged from 2 to 150 µg kg?1. This method was applied to the analysis of 18 meat samples and some veterinary drugs as enrofloxacin and sulfadiazine were detected and further identified/quantified (with triple quadrupole) in two different samples at 33 µg kg?1 and trace levels, respectively. No pesticides were detected in the analyzed samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.

Densities (ρ/103kg m?3), apparent molar volume (V2/10?6m3mol?1), and viscosities (η/0.1 kg m?1s?1) for 5.0 to 60.0 millimol kg?1 (m mol kg?1) 1,3,5 triazine (melamine) at interval of 5.0 m mol kg?1 were determined. The data were regressed and extrapolated to infinite dilution (m→0) and referred to as limiting apparent molal volume (V¯2 0) and intrinsic viscosity (B) and used to calculate free energy of activation (Δµ2 0*/KJ mol?1). Such functions illustrate feasibility of micromixing of melamine with paraffin wax emulsifier+4‐nonyl phenol ethoxylate, a nonionic surfactant in aqueous solution. The Δµ2 0* decides micromixing of melamine stabilized by poly(acrylic acid) of 4500 g mol?1 molecular weight, known as superabsorber for water. Paraffin wax emulsion was stabilized by a nonyl phenol ethoxylate and wax particles observed to adhere to melamine surface due to interactions between poly(acrylic acid) dispersant and ethoxylate group of surfactant, resulting in sedimentation of mixed particles. Thus V¯2 0, B, and Δµ2 0* values conclude to ‐NH2 group interactions for micromixing and scanning electron micrograph (SEM) elucidates microstructure and uniformity of micromixing.  相似文献   

6.
A sequential voltammetric procedure for the determination of uranium, cadmium and lead was investigated at an ex situ bismuth film electrode (BiFE). First, the adsorptive stripping voltammetry was applied to assay the U(VI)‐cupferron complex in the differential pulse mode (detection limit of 1.0 µg L?1, 200 s accumulation time). Through the manipulation of the same aliquot of the sample, efforts were made to quantify cadmium and lead by square wave anodic stripping voltammetry. Detection limits of 2.03 µg L?1 for Cd (II) and 2.43 µg L?1 for Pb (II) were calculated (100 s accumulation time). The methodology was successfully applied to phosphate fertilizer samples after open vessel wet decomposition (HNO3/H2O2). The following value ranges were evaluated: U (VI) 37.2–150 mg kg?1, Pb (II) 78.3–204 mg kg?1 and Cd (II) 44.1–71.6 mg kg?1. Validation was performed by using the standard reference materials SRM‐695 – phosphate fertilizer – and SRM‐1643e – water.  相似文献   

7.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

8.
An analytical method using liquid chromatography‐atmospheric pressure photoionization tandem mass spectrometry with toluene as a dopant was developed for the determination of triterpenes in medicinal plant extracts. The 12 compounds determined have been shown to exhibit biological activity, such as gastroprotective, hepatoprotective, anti‐inflammatory, antiviral and anti‐tumor effects. The parameters of the atmospheric pressure photoionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection and quantification ranged from 0.4 to 157.9 µg l?1 and 1.3 to 526.4 µg l?1, respectively. The method was validated and applied to extracts of five medicinal plants species (Mansoa alliacea (Lam.) A.H.Gentry, Bauhinia variegata var variegata, Bauhinia variegata var alboflava, Cecropia obtuse Trécul and Cecropia palmate Willd) from the Amazonian region. The concentrations of the six triterpenes quantified in the samples ranged from 0.424 mg kg?1 for ursolic acid to 371.96 mg kg?1 for β‐amyrin, which were quantified by using the standard addition method (n = 3). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Analysis of the broad-spectrum herbicide glyphosate and its related compounds is quite challenging. Tedious and time-consuming derivatization is often required for these substances due to their high polarity, high water solubility, low volatility and molecular structure which lacks either a chromophore or fluorophore. A novel liquid chromatography/tandem mass spectrometry (LC/MS–MS) method has been developed for the determination of glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate using a reversed-phase and weak anion-exchange mixed-mode Acclaim® WAX-1 column. Aqueous environmental samples are directly injected and analyzed in 12 min with no sample concentration or derivatization steps. Two multiple reaction monitoring (MRM) channels are monitored in the method for each target compound to achieve true positive identification, and 13C,15N-glyphosate is used as an internal standard to carry out isotope dilution mass spectrometric (IDMS) measurement for glyphosate. The instrument detection limits (IDLs) for glyphosate, AMPA and glufosinate are 1, 2 and 0.9 μg/L, respectively. Linearity of the detector response with a minimum coefficient of determination (R2) value (R2 > 0.995) was demonstrated in the range of ∼10 to 103 μg/L for each analytes. Spiked drinking water, surface water and groundwater samples were analyzed using this method and the average recoveries of analytes in three matrices ranged from 77.0 to 102%, 62.1 to 101%, 66.1 to 93.7% while relative standard deviation ranged from 6.3 to 10.2%, 2.7 to 14.8%, 2.9 to 10.7%, respectively. Factors that may affect method performance, such as metal ions, sample preservation, and storage time, are also discussed.  相似文献   

10.
《Analytical letters》2012,45(10):1634-1649
A selective method for the determination of fourteen nitroimidazoles and their hydroxy-metabolites in honey was developed based on improved molecularly imprinted solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. The separation of analytes was performed on a C18 column using a mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water with gradient elution. The method was suitable for metronidazole, hydroxymetronidazole, dimetridazole, ronidazole, hydroxydimetridazole, ipronidazole, hydroxyipronidazole, carnidazole, menidazole, nimorazole, ornidazole, secnidazole, ternidazole, and tinidazole. The procedure was evaluated according to EU Commission Decision 2002/657/EC requirements by determining linearity, specificity, recovery, repeatability, within-laboratory reproducibility, decision limit, detection capability, matrix effects, and stability. The method determined nitroimidazoles and their hydroxy-metabolites below the recommended concentration level of 3 µg kg?1. The decision limits and detection capabilities ranged from 0.110 µg kg?1 to 0.387 µg kg?1 and from 0.179 µg kg?1 to 0.508 µg kg?1, respectively. The results from stability tests indicated that all analyzed nitroimidazoles were stable in honey stored at 4°C for at least 28 weeks and that elevated temperature and exposure to light exposure accelerated their degradation. The method was successfully applied to the analysis of a wide variety of honey samples.  相似文献   

11.
The paper presents the application of pre-chromatographic derivatisation reaction of aminophosphonic acids (glyphosate and glufosinate) with phenylisothiocyanate in thin-layer chromatography (TLC). Silica gel as stationary phase and a mixture of methanol–water–diethyl ether (2:1:1, v/v/v) and ethanol–water–diethyl ether (4:1:2, v/v/v) were used as the mobile phase, respectively. Detection was performed by spraying TLC plates with a freshly prepared mixture of sodium azide (1%), starch solution (1% for glyphosate and 2% for glufosinate), and potassium iodide (1.0 × 10–2 mol L?1) adjusted to pH 6.0 and exposed to iodine vapour for 15 s. Both glyphosate and glufosinate as phenylthiocarbamates (PTC-derivatives) were visible as white spots against a violet background which were converted into chromatograms using TLSee software. The calibration curves for glyphosate and glufosinate were within the ranges of 8.45–84.5 ng and 1.98–79.2 ng per spot, respectively. The limits of detection and quantification for glyphosate were at a level of 4 and 8.45 ng per spot, and for glufosinate were 0.99 and 1.78 ng per spot, respectively. The proposed method was successfully used in the determination of aminophosphonic acids in spiked plants samples.  相似文献   

12.
This paper describes a method for the sensitive and selective determination of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) residues in water and soil samples. The method involves a derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the case of water samples a volume of 10 mL was derivatized and then 4.3 mL of the derivatized mixture was directly injected in an on-line solid phase extraction (SPE)-LC-MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column. Soil samples were firstly extracted with potassium hydroxide. After that, the aqueous extract was 10-fold diluted with water and 2 mL were derivatized. Then, 50 microL of the derivatized 10-fold diluted extract were injected into the LC-MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at 50 and 500 ng/L, and also in soil samples, spiked at 0.05 and 0.5 mg/kg. In water samples, the mean recovery values ranged from 89 to 106% for glyphosate (RSD <9%), from 97 to 116% for AMPA (RSD < 10%), and from 72 to 88% in the case of glufosinate (RSD < 12%). Regarding soil samples, the mean recovery values ranged from 90 to 92% for glyphosate (RSD <7%), from 88 to 89% for AMPA (RSD <5%) and from 83 to 86% for glufosinate (RSD <6%). Limits of quantification for all the three compounds were 50 ng/L and 0.05 mg/kg in water and soil, respectively, with limits of detection as low as 5 ng/L, in water, and 5 microg/kg, in soil. The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA, while it was not efficient for glufosinate, that was quantified by external standards calibration. The method developed has been applied to the determination of these compounds in real water and soil samples from different areas. All the detections were confirmed by acquiring two transitions for each compound.  相似文献   

13.
An analytical method for the determination of both sulfadiazine (SDZ) and trimethoprim (TMP), and also N4-acetyl-sulfadiazine (AcSDZ), the main metabolite of SDZ, in fish muscle plus skin has been developed and validated. Dapsone was used as internal standard. The method involves extraction of the analytes from fish tissue by pressurized liquid extraction using water as extractant. Sample cleanup was carried out by solid phase extraction using Abselut Nexus cartridges. Target analytes were quantitatively determined by liquid–chromatography mass spectrometry using single ion monitoring. The developed method was validated according to the European Union requirements (decision 2002/657/EC). The limit of detection for SDZ and AcSDZ was 3.0 and 2.5 µg kg?1 for TMP. The limit of quantification (LOQ) was 10 µg kg?1 for SDZ and AcSDZ and 7.5 µg kg?1 for TMP. The recovery experiments carried out included the concentration levels of 0.5, 1 and 1.5 times the MRLs for SDZ and TMP. Concentration levels for AcSDZ were the same as SDZ. The values obtained were higher than 92.0% with coefficient of variation (CV, %) below 8.6%. The precision of the method, calculated as CV (%), ranged from 0.2 to 6.8% and from 0.8 to 8.9% for intra–day and inter–day analysis, respectively. Decision limit (CCα) was calculated as 104.3, 53.7 and 105.3 µg kg?1 for SDZ, TMP and AcSDZ, respectively. Detection capability (CCβ) was calculated as 110.0, 58.8 and 109.7 µg kg?1 for SDZ, TMP and AcSDZ, respectively. “Matrix effect” and “relative matrix effect” were also evaluated. The method was used for the analysis of fish samples purchased from local markets.  相似文献   

14.
Dissipation of the herbicide active ingredient glyphosate was investigated in natural waters. To assess combined effects, glyphosate was applied in its pure form (glyphosate isopropylammonium salt) and in preparation Roundup Classic® formulated with polyethoxylated tallowamines (POEA). Standing and running surface water samples originated from Lake Balaton and River Danube between early May and mid-June of 2015. The kinetics of dissipation of glyphosate, measured by high-performance liquid chromatography combined with UV-VIS absorbance detection or tandem mass spectrometry, was investigated under laboratory conditions in aquaria with or without the presence of biofilms. The quantity and the biofilm structure of algal biomass were determined by in vivo fluorimetry and scanning electron microscopy. The presence of POEA affected the dissipation of glyphosate, and dissipation profiles differed in the investigated natural waters. Significantly higher initial concentrations of glyphosate were measured in River Danube for treatment with formulated glyphosate (101.4 ± 6.2 µg L?1), than with glyphosate alone (79.9 ± 6.6 µg L?1), and dissipation to a residual level (57.6 ± 1.4 µg L?1) consequently took longer (approximately by 1 day). Degradation of glyphosate from the initial level (91.24 ± 5.9 µg L?1) in Lake Balaton was not detected. Phytotoxic effects of glyphosate, particularly if enhanced by a formulant on algal biomass, were observed. Thus, 5–18% and 11–33% of algal biomass reduction was determined in River Danube upon treatments with glyphosate and Roundup Classic®, respectively. Corresponding biomass decreases in Lake Balaton were 1.3–13% and 9–14%, respectively, accompanied by an overall decay in the algal biofilms. In River Danube, treatments resulted in the occurrence of 1.4–5.8% of green algae in the algal biomass in 28 days, while green algae were not detected in the untreated control. The results indicate that glyphosate is capable of modifying the structure of the algal community and to induce increased secretion of extracellular polymeric substances matrix in the biofilms assessed.  相似文献   

15.
Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE‐C4D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field‐enhanced sample injection, coupled with CE‐C4D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01–0.1 μM (1.7–11.1 μg/L) and sensitivity enhancements of 48‐ to 53‐fold were achieved with the large volume sample stacking‐CE‐C4D method. By performing the field‐enhanced sample injection‐CE‐C4D procedure, excellent LODs down to 0.0005–0.02 μM (0.1–2.2 μg/L) as well as sensitivity enhancements of up to 245‐ to 1002‐fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water.  相似文献   

16.
The organometallic compounds triphenyltinsalicylate (TPTS) and triphenylsiliconsalicylate (TPSS) were found to be trypanocidal against culture forms of Trypanosoma congolense. Both compounds at 0.4–5 µmol ml?1 completely killed the parasites in vitro within 3‐8 min after incubation. A dosage of 1.5 µmol ml?1 TPTS killed at least 50% of the parasite population, which was preceded by a cluster effect as observed under phase contrast microscopy. Also, 3.5 µg ml?1 of TPSS was required to kill 50% of the T. congolense cells. At a low dosage of 2–10 µg ml?1, it was feasible to monitor the effect and mode of action of the organometallic compounds. There was a 50% reduction in the amount of synthesized cholesterols in the presence of 6 µg ml?1 and 10 µg ml?1 of TPTS and TPSS respectively. TPTS and TPSS also non‐competitively inhibited pyrophosphatase from lysed T. congolense with Ki values of 3.6 µM and 8.5 µM respectively. In the in vivo experiments, TPTS cured T. congolense infected mice at a dosage of 2–10 mg kg day?1 for 4 days. TPSS was, however, completely inactive in vivo. The use of organometallic compounds in the design of trypanocides is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive, selective and high throughput gas chromatography–tandem mass spectrometry method using programmable temperature vaporization–large volume injection mode (PTV-LVI-GC-MS/MS) for the analysis of 30 organochlorine pesticides (OCPs) including toxaphenes in sediments was developed. The PTV-LV injection settings, viz. inlet temperature, split flow, injection phase time, and injection speed were optimized for 50 µL injection. A significant increase in sensitivity was accomplished as compared with that obtained by the conventional 1 µL cold splitless injection. Average LVI recoveries for OCPs were in the range 58–133 % with low % RSD in instrument precision (<12 %). The method detection limits achieved were 0.04–0.92 µg kg?1. The method recovery ranged from 80 to 120 % with <10 % RSD for more than 83 % of targeted analytes fortified at 10 µg kg?1 in sediments. The PTV-LVI-GC-MS/MS allows simultaneous determination and unambiguous confirmation of trace OCPs and toxaphene congeners, which significantly streamlines and improves the trace organic analysis in the environmental surveillance and monitoring.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), methylmercury (MeHg+) and butyltins (mono-, di- and tri-butyltin, MBT, DBT and TBT) were monitored in oysters (Crassostrea sp.) and sediments collected in different sampling points of the UNESCO reserve of the biosphere of Urdaibai (Bay of Biscay) from March 2006 to June 2007. In the case of oyster samples, concentrations in the 290–1814 µg kg?1 (PAHs), 70–475 µg kg?1 (PCBs), 75–644 µg kg?1 (MeHg+) and 200–1300 µg kg?1 (as a sum of the three butyltins) ranges were obtained. In most samples TBT was the most abundant butyltin, followed by DBT and MBT. It should be highlighted that most samples exceeded the highest range (367 µg kg?1) found in the last mussel watch programme carried out by the National Oceanic and Atmospheric Administration (NOAA) for butyltins in oyster samples. This could be due to the presence of a shipyard in the estuary. Sediment concentrations ranged as follows: total PAHs (856–3495 µg kg?1) and total PCBs (58–220 µg kg?1). Organometallic species were always below the limits of detection (LODs) (0.24 µg kg?1 for MeHg+, 0.6 µg kg?1 for MBT, 0.48 µg kg?1 for DBT and 1.1 µg kg?1 for TBT). In both sediment and oyster PAH sources were mostly combustion. In the case of PCBs, 4-6 chlorine-atom congeners were the most abundant ones. Slight differences in the profile of PAHs as well as PCBs can be detected when the matrices were compared with each other. Finally, in the case of PAHs, sediment and water column played the main role in the accumulation pathway into the organisms in all the sampling stations.  相似文献   

19.
A series of 5‐[1‐methylsilacyclo‐pentyl/‐hexyl]‐2‐furfural, 5‐[1‐methylsilacyclo‐pentyl/‐hexyl]‐2‐thiophene carbaldehyde and 1,1‐bis(5‐formyl‐2‐furyl)silacyclo‐pentane/‐hexane and their thiosemicarbazones has been synthesized and subjected to antitumour assay. The effects of the substituents and the heterocycle were examined to establish structure–activity relationships. Thiosemicarbazones of 5‐(1‐methylsilacyclohexyl)furfural and 5‐(1‐methylsilacyclopentyl)furfural were very active (1.0–4.0 µg ml?1) in vitro against human fibrosarcoma HT‐1080 and mouse hepatoma MG‐22A cells. At the same time, they were less toxic for normal fibroblasts 3T3. All compounds synthesized exhibited low or moderate toxicity (LD50 152–1904 mg kg?1). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Penicillins are used universally in both human and veterinary medicine. The European Union (EU) has established maximum residue levels (MRLs) for most ß-lactam antibiotics in milk and animal tissues and included them in the National Residue Monitoring Programs. In this study, a novel method is described for the determination and confirmation of eight penicillins in porcine tissues, milk and animal feed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). To prevent degradation of penicillin residues during workup, a derivatisation procedure was developed, by which penicillins were converted to stable piperidine derivatives. Deuterated piperidine derivatives were synthesised for all relevant penicillins, enabling the use of isotope dilution for accurate quantification. Penicillin residues were derivatised in the crude extract with piperidine and isolated using solid-phase extraction. The penicillin piperidine derivatives were determined by LC–MS/MS. The method was validated at the current MRLs, which range from 25–300 µg kg?1 in muscle and kidney to 4–30 µg kg?1 in milk as well as at the target value of 100 µg kg?1 chosen for animal feed, according to the EU requirements for a quantitative confirmatory method. Accuracy ranged from 94–113% (muscle), 83–111% (kidney) and 87–103% (milk) to 88–116% (animal feed). Intra-day precision (relative standard deviation (RSD)r) ranged from 5–13% (muscle, n?=?18), 4–17% (kidney, n?=?7) and 5–18% (milk, n?=?7) to 11–32% (animal feed, n?=?18). Inter-day precision (RSDRL, n?=?18) ranged from 6–23% (muscle) to 11–36% (animal feed). From the results, it was concluded that the method was fit for purpose at the target MRLs in animal tissue and target levels for animal feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号