首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model is applied, using an anisotropic yield criterion, and in each case analyzed the effect of non-normality is compared with results for the standard normality flow rule. Due to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode mixity on the steady-state fracture toughness is determined. It is found that the steady-state fracture toughness is quite sensitive to differences in the initial orientation of the principal axes of the anisotropy relative to the interface.  相似文献   

2.
Plane-strain yielding from a crack in an infinite elastic body is represented here by a distribution of edge dislocations on two planes inclined at angles ±ga to the crack plane, and the equilibrium condition is solved numerically. Approximate analytical expressions are obtained for the plastic-zone length, the crack opening displacement, and the J-integral, as functions of the applied stress and α. A comparison with a co-planar model of the plastic zone gives very similar results for α ≈ 65°. It is shown that fracture criteria based either on a critical crack opening displacement (COD) or on a critical value of J are always different, and the use of the former may lead to critical defect-sizes which are twice as large as those given by the latter. Furthermore, COD appears not to be a well-defined material property. The critical J criterion gives a fracture stress which is α-dependent : this may be responsible for deviations towards results of linear elastic fracture mechanics when post-yield fracture mechanics is used to analyse extensive yielding. The changes in the stress field of the crack due to the existence of the plastic zone are also discussed.  相似文献   

3.
A mode III crack with a cohesive zone in a power-law hardening material is studied under small scale yielding conditions. The cohesive law follows a softening path with the peak traction at the start of separation process. The stress and strain fields in the plastic zone, and the cohesive traction and separation displacement in the cohesive zone are obtained. The results show that for a modest hardening material (with a hardening exponent N = 0.3), the stress distribution in a large portion of the plastic zone is significantly altered with the introduction of the cohesive zone if the peak cohesive traction is less than two times yield stress, which implies the disparity in terms of the fracture prediction between the classical approach of elastic–plastic fracture mechanics and the cohesive zone approach. The stress distributions with and without the cohesive zone converge when the peak cohesive traction becomes infinitely large. A qualitative study on the equivalency between the cohesive zone approach and the classical linear elastic fracture mechanics indicates that smaller cracks require a higher peak cohesive traction than that for longer cracks if similar fracture initiations are to be predicted by the two approaches.  相似文献   

4.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

5.
Cleavage fracture in ferritic steels is often initiated in brittle carbides randomly distributed in the material. The carbides break as a result of a fibre loading mechanism in which the stress levels in the carbides are raised, as the surrounding ferrite undergoes plastic deformation. The conditions in the vicinity of the nucleated micro-crack will then determine whether the crack will penetrate or be arrested by the ferrite. The ferrite is able to arrest nucleated cracks through the presence of mobile dislocations, which blunt and shield the microcrack and thus lowers the stresses at the crack tip. Hence, the macroscopic toughness of the material directly depends on the ability of the ferrite to arrest nucleated micro-cracks and in turn on the plastic rate sensitivity of the ferrite. The initiation of cleavage fracture is here modelled explicitly in the form of a micro-crack, which nucleates in a brittle carbide and propagates into the surrounding ferrite. The carbide is modelled as an elastic cylinder or in a few cases an elastic sphere and the ferrite as an elastic viscoplastic material. The crack growth is modelled using a cohesive surface, where the tractions are governed by a modified exponential cohesive law. It is shown that the critical stress, required to propagate a microcrack from a broken carbide, increases with decreasing plastic rate sensitivity of the ferrite. The results also show that a low stress triaxiality and a high aspect ratio of the carbide promote the initiation of cleavage fracture from a broken carbide.  相似文献   

6.
A number of plane stress numerical analyses of the mode I elastoplastic fracture mechanics problem have been performed in the past using the Huber–Mises yield criterion. This study employs instead the Tresca yield condition using an incremental theory of plasticity for a stationary crack. A commercial finite element program is used to solve the opening mode of fracture problem (mode I) for a square plate containing a central crack under generalized plane stress loading conditions. A biaxial uniform tensile traction is applied to the edges of a thin plate composed of a linear elastic non-work hardening material under small strain assumptions. The finite element results are compared with the analytical predictions of the Dugdale plastic strip model for a crack in an infinite plate subject to a biaxial uniform load at infinity.  相似文献   

7.
In previous work, the stresses of a mode I elastic–plastic fracture mechanics problem were analytically continued across a prescribed elastoplastic boundary for plane stress loading conditions involving a linear elastic/perfectly plastic material obeying the Tresca yield condition. Immediately across the elastic-plastic boundary, a nonlinear parabolic partial differential equation governs the plastic stress field. The present solution deals with stresses extending beyond the parabolic region into the hyperbolic region of the plastic zone. This analytical solution is obtained through a tranformation of the original system of nonlinear partial differential equations into a linear system with constant coefficients. The solution, so obtained, is expressible in terms of elementary transcendental functions. It also exhibits a limiting line which passes through the crack tip. This feature of the solution suggests the formation of a plastic hinge in the material.  相似文献   

8.
Experimental results suggest that the interfacial fracture resistance is minimal for approximate near tip Mode I accompanied by positive and negative near tip Mode II. Finite-strain FE analysis is made for an elastic–plastic medium bonded to an ideally elastic medium with an interface crack. Small-scale plasticity conditions are invoked and examined in relation to the elastic–plastic stress distribution along the bond line. Plasticity engenders a tendency to turn near tip biaxiality towards pure Mode I regardless of the mixed-mode loading. High levels of hydrostatic stress are attained. For different mode mixities of the applied load, the dependence of the elastic–plastic normal bond stress on load level is examined. It is found that under positive Mode II loading, the normal bond stress σyy tends to saturate as the load level rises. This does not occur for Mode I and negative Mode II loading. In addition, deformation patterns inside the plastic zone are examined for mixed-mode situations. A displacement criterion based on the normal bond crack opening suggests a dependence of the critical load level on the extent of mixed mode. Under positive mode II fracture, traces of the ductile material are found at the top of the elastic substrate. Some of these conclusions appear to be consistent with the fracture patterns observed for LD-polyethylene/glass interfacial mixed-mode fracture.  相似文献   

9.
Based on stress field equations and Hill yield criterion, the crack tip plastic zone is determined for orthotropic materials and isotropic materials under small-scale yielding condition. An analytical solution to calculating the crack tip plastic zone in plane stress states is presented. The shape and size of the plastic zone are analyzed under different loading conditions. The obtained results show that the crack tip plastic zones present “butterfly-like” shapes, and the elastic–plastic boundary is smooth. The size of the plastic zone for orthotropic composites is less at the crack tip for various loading conditions, compared with the case of isotropic materials. Crack inclination angle and loading conditions affect greatly the size and shape of crack tip plastic zone. The mode I crack has a crucial effect on the plastic zone for mixed mode case in plane stress state. The plastic zone for pure mode I crack and pure mode II crack have a symmetrical distribution to the initial crack plane.  相似文献   

10.
本文详细分析了理想塑性介质中平面应力I型静止裂纹的尖端弹塑性场,结果表明:裂纹尖端应力场内可以不包含应力间断线,但含有弹性区,作为这个一般解的特殊情况,当弹性区被两侧的塑性区挤压消失而尖端场成为满塑性区时,便得到Hutchinson(1968)给出的解,此外,文中还给出了另一种均匀应力区位于裂纹前方的解,这是[1]未曾得到的。  相似文献   

11.
For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value of the maximum angle of deviation from normality in the non-normality flow rule.  相似文献   

12.
For crack growth along an interface between two adjacent elastic–plastic materials in a layered solid, the resistance curve behaviour is analysed by approximating the behaviour in terms of a bi-material interface under small scale yielding conditions. Thus, it is assumed that the layers are thick enough so that the extent of the plastic regions around the crack tip are much smaller than the thickness of the nearest layers. The focus is on the effect of initial residual stresses in the layered material, or on T-stress components induced during loading. The fracture process is represented in terms of a cohesive zone model. It is found that the value of the T-stress component in the softer material adjacent to the interface crack plays a dominant role, such that a negative value of this T-stress gives a significant increase of the interface fracture toughness, while a positive value gives a reduction of the fracture toughness.  相似文献   

13.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

14.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is studied, and asymmetrical dynamic fracture model of bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is ascertained by maximum tensile stress, the fiber ruptures and hence the crack propagation should also appear in the modality of self-similarity. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two increasing loads given is obtained, respectively. In terms of correlative material properties, the variable rule of dynamic stress intensity factor was depicted very well. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be gained.  相似文献   

15.
A model for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KIc, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic (“elastic/plastic”) crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.  相似文献   

16.
17.
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode Ⅱ dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.  相似文献   

18.
In this paper, a multiscale model that combines both macroscopic and microscopic analyses is presented for describing the ductile fracture process of crystalline materials. In the macroscopic fracture analysis, the recently developed strain gradient plasticity theory is used to describe the fracture toughness, the shielding effects of plastic deformation on the crack growth, and the crack tip field through the use of an elastic core model. The crack tip field resulting from the macroscopic analysis using the strain gradient plasticity theory displayes the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic fracture analysis, the discrete dislocation theory is used to describe the shielding effects of discrete dislocations on the crack growth. The result of the macroscopic analysis near the crack tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis. The equilibrium locations of the discrete dislocations around the crack and the shielding effects of the discrete dislocations on the crack growth at the microscale are calculated. The macroscopic fracture analysis and the microscopic fracture analysis are connected based on the elastic core model. Through a comparison of the shielding effects from plastic deformation and the discrete dislocations, the elastic core size is determined.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号