首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, carbon nanotubes (CNTs) added polyacrylonitrile/polypyrrole (PAN/PPy) electrospun nanofibers were produced. Average diameters of the nanofibers were measured as 268 and 153 nm for 10 and 25 wt% of PPy contents, respectively. A relatively higher strain to failure values (23.3%) were observed for the low PPy content. When as-grown CNTs (1 and 4 wt%) were added into the PAN/PPy blends, disordered nanofibers were observed to form within the microstructure. To improve the interfacial properties of CNTs/PAN/PPy composites, CNTs were functionalized with H2SO4/HNO3/HCl solution. The functionalized CNTs were well dispersed within the nanofibers and aligned along the direction of nanofibers. Therefore, beads formation on nanofibers decreased. The impedance of the nanofibers was found to decrease with the PPy content and CNT addition. These nanofibers had a great potential to be used as an electrochemical actuator or a tissue engineering scaffold.  相似文献   

2.
The morphology, structure, and properties of polyethylene terephthalate (PET)/Carbon Nanotubes (CNT) conductive nanoweb were studied in this article. Nanocomposite nanofibers were obtained through electrospinning of PET solutions in trifluoroacetic acid (TFA)/dichloromethane (DCM) containing different concentrations and types of CNTs. Electrical conductivity measurements on nanofiber mats showed an electrical percolation threshold around 2 wt % multi‐wall carbon nanotubes (MWCNT). The morphological analysis results showed smoother nanofibers with less bead structures development when using a rotating drum collector especially at high concentrations of CNTs. From crystallographic measurements, a higher degree of crystallinity was observed with increasing CNT concentrations above electrical percolation. Spectroscopy results showed that both PET and CNT orientation increased with the level of alignment of the nanofibers when the nanotube concentration was below the electrical percolation threshold; while the orientation factor was reduced for aligned nanofibers with higher content in CNT. Considerable enhancement in mechanical properties, especially tensile modulus, was found in aligned nanofibers; at least six times higher than the modulus of random nanofibers at concentrations below percolation. The effect of alignment on the mechanical properties was less important at higher concentrations of CNTs, above the percolation threshold. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2052–2064, 2010  相似文献   

3.
Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two‐strand rod die. The extrudates were hot‐drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers extracted from the as‐obtained extrudates after removal of CAB by acetone were investigated by scanning electron microscopy. The influences of draw ratio, viscosity ratio, and composition ratio of CAB/iPP on the morphology evolution of iPP phase into nanofibers in the immiscible blends were studied. It was found that the thermoplastic iPP nanofibers were formed from the elongation of iPP ellipsoids, end‐to‐end merging of elongated iPP microfibers, and the size decrease of iPP microfibers in the processes of extrusion and drawing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 921–931, 2010  相似文献   

4.
The functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were obtained by Friedel–Crafts acylation, which introduced aromatic amine groups onto the sidewall. And the grafted yield was adjusted by controlling the concentration of the catalyst. The composite solutions containing f‐MWCNTs and polyacrylonitrile (PAN) were then prepared by in‐situ or ex‐situ solution polymerization. The resulting solutions were electrospun into composite nanofibers. In the in‐situ polymerization, morphological observation revealed that f‐MWCNTs was uniformly dispersed along the axes of the nanofibers and increased interfacial adhesion between f‐MWCNTs and PAN. Furthermore, two kinds of f‐MWCNTs/PAN composite nanofibers had a higher degree of crystallization and a larger crystal size than PAN nanofibers had, so the specific tensile strengths and modulus of the composite nanofibers were enhanced. And the thermal stability of f‐MWCNTs/PAN from in‐situ method was higher than that of ex‐situ system. When the f‐MWCNTs content was less than 1 wt%, the specific tensile strengths and modulus of nanofibers were enhanced with increase in the amounts of f‐MWCNTs, and f‐MWCNTs/PAN of in‐situ system provided better mechanical properties than that of ex‐situ system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Reactive compatibilization of immiscible polymers is becoming increasingly important and hence a representative study of a polycarbonate/high density polyethylene (PC/HDPE) system is the focus of this paper. A grafted copolymer PC‐graft‐ethylene‐co‐acrylic acid (PC‐graft‐EAA) was generated as a compatibilizer in situ during processing operation by ester and acid reaction between PC and ethylene‐acrylic acid (EAA) in the presence of the catalyst dibutyl tin oxide (DBTO). As the polyethylene (PE) matrix does not play any part during the synthesis of the copolymer and since PC and EAA are also immiscible, to simplify the system, the influence of this copolymer formation at the interface between PC and EAA on rheological properties, phase morphology, and crystallization behavior for EAA/PC binary blends was first studied. The equilibrium torque increased with the DBTO content increasing in EAA/PC blends on Haake torque rheometer, indicating the in situ formation of the graft copolymer. Scanning electron microscopy (SEM) studies of cryogenically fractured surfaces showed a significant change at the distribution and dispersion of the dispersed phase in the presence of DBTO, compared with the EAA/PC blend without the catalyst. Differential scanning calorimetry (DSC) studies suggested that the heat of fusion of the EAA phase in PC/EAA blends with or without DBTO reduced with the formation of the copolymer compared with pure EAA. Then morphological studies and crystallization behavior of the uncompatibilized and compatibilized blends of PC/PE were studied as functions of EAA phase concentration and DBTO content. Morphological observations in PC/PE blends also revealed that on increasing the EAA content or adding the catalyst DBTO, the number of microvoids was reduced and the interface was intensive as compared to the uncompatibilized PC/PE blends. Crystallization studies indicated that PE crystallized at its bulk crystallization temperature. The degree of crystallinity of PE phase in PC/PE/EAA blends was also reduced with the addition of EAA and DBTO compared to the uncompatibilized blends of PC/PE, indicating the decrease in the degree of crystallinity was more in the presence of PC‐graft‐EAA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A novel technique of fabricating magnetic thermoplastic nanofibers by the control of the phase separation of immiscible polymer blends during melt extrusion was presented. The magnetic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE)/Fe3O4 composite nanofibers were prepared via the melt extrusion of cellulose acetate butyrate matrix and PVA‐co‐PE preloaded with different amounts of Fe3O4 nanoparticles. The morphologies of magnetic composite nanofibers were characterized by scanning electron microscopy. The uniform dispersion of Fe3O4 nanoparticles in nanofiber matrixes and crystal structures were confirmed using transmission electron microscopy and wide angle X‐ray diffraction. Thermogravimetric analysis was employed to quantify the exact loading amount of Fe3O4 nanoparticles in the composite nanofibers. The magnetic measurements showed that composite nanofibers displayed superparamagnetic behavior at room temperature. With increasing content of Fe3O4 nanoparticles, the saturation magnetization of the magnetic composite nanofiber significantly improved. The prepared magnetic composite nanofibers might have found potential applications in the sensors and bio‐molecular separation fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A novel macro/nano blended nonwoven with excellent physical properties was prepared by electrospinning polyurethane (PU) nanofibers onto the surface of ramie webs under different weight ratios of N,N‐dimethylacetamide (DMAc)/acetone cosolvents. The ratio of cosolvents has a significant influence on the morphology, tensile properties, resilience, and thermal properties of the resultant samples. Bead‐free and fine interconnected nanofibers were obtained with an increase of acetone content up to 60 wt%. The total physical properties of the blended nonwovens were optimal for a DMAc/acetone ratio of 40/60, in which the tensile load at break, extension at break and Young's modulus were 441, 54, and 256% higher than that of pure ramie web, respectively. The resilience of the blended nonwovens was ~20% higher than that of nonblended ramie web. The significant improvement of physical properties may be due to the good connection between PU nanofiber membranes and ramie webs and the molecular chain structure differences, interconnected structural differences, and high extensibility of PU nanofibers, according to the results of crystallization by differential scanning calorimetry (DSC) and morphological observation by scanning electronic microscopy (SEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1–14, 2010  相似文献   

8.
Hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) is a modified β‐cyclodextrin (β‐CD) derivative, which is toxicologically harmless to mammals and other animals. HP‐β‐CD is electrospun from an aqueous solution by blending with a non‐toxic, biocompatible, synthetic polymer poly(ethylene oxide) (PEO). Aqueous solutions containing different HP‐β‐CD/PEO blends (50:50–80:20) with variable concentrations (4 wt%–12 wt%) were used. Scanning electron microscope was used to investigate the morphology of the fibers, and Fourier transform infrared spectroscopy analysis confirmed the presence of HP‐β‐CD in the fiber. Uniform nanofibers with an average diameter of 264, 244, and 236 nm were obtained from 8 wt% solution of 50:50, 60:40, and 70:30 HP‐β‐CD/PEO, respectively. The average diameter of the fiber was decreased with increasing of HP‐β‐CD/PEO ratio. However, a higher proportion of HP‐β‐CD in the spinning solution increased beads in the fibers. The polymer concentration had no significant effect on the fiber diameter. The most uniform fibers with the narrowest diameter distribution were obtained from the 8 wt% of 50:50 solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The phase behavior of a partially miscible blend of poly(ethylene oxide) (PEO) and cellulose acetate butyrate (CAB) and the crystalline microstructure of PEO in the blend were studied with differential scanning calorimetry (DSC), optical microscopy, and synchrotron small‐angle X‐ray scattering (SAXS) methods. PEO/CAB showed a lower critical solution temperature (LCST) of 168 °C at the critical composition of PEO of 60 wt %. All blend compositions showed a single glass‐transition temperature (Tg) when they were prepared at temperatures lower than the LCST. However, with increasing CAB content, Tg of the blend changed abruptly at 70 wt % CAB; that is, a cusp existed. Below 70 wt % CAB, the change in Tg with blend composition was predicted by the Brau–Kovacs equation, whereas this change was predicted by the Fox equation at higher CAB contents. A gradual but small depression of the melting point of PEO in the blend with an increasing amount of CAB suggested that the PEO/CAB blends exhibited a weak intermolecular interaction. From DSC and SAXS experiments, it was found that amorphous CAB was incorporated into the interlamellar region of PEO for blends with less than 20 wt % CAB, whereas it was segregated to exist in the interfibrillar region in PEO for other blends with larger amounts of CAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1673–1681, 2002  相似文献   

10.
《先进技术聚合物》2018,29(8):2344-2351
The recycled polypropylene/recycled high‐impact polystyrene (R‐PP/R‐HIPS) blends were melt extruded by twin‐screw extruder and produced by injection molding machine. The effects of polystyrene‐b‐poly(ethylene/propylene)‐b‐polystyrene copolymer (SEPS) used as compatibilizer on the mechanical properties, morphology, melt flow index, equilibrium torque, and glass transition temperature (Tg) of the blends were investigated. It was found that the notch impact strength and the elongation at break of the R‐PP/R‐HIPS blends with the addition of 10 wt% SEPS were 6.46 kJ/m2 and 31.96%, which were significantly improved by 162.46% and 57.06%, respectively, than that of the uncompatibilized blends. Moreover, the addition of SEPS had a negligible effect on the tensile strength of the R‐PP/R‐HIPS blends. Additionally, the morphology of the blends demonstrated improved distribution and decreased size of the dispersed R‐HIPS phase with increasing the SEPS content. The increase of the melt flow index and the equilibrium torque indicated that the viscosity of the blends increased when the SEPS was incorporated into the R‐PP/R‐HIPS blends. The dynamic mechanical properties test showed that when the content of SEPS was 10 wt%, the difference of Tg decreased from 91.72°C to 81.51°C. The results obtained by differential scanning calorimetry were similar to those measured by dynamic mechanical properties, indicating an improved compatibility of the blends with the addition of SEPS.  相似文献   

11.
《中国化学》2017,35(12):1875-1880
To improve the dispersion of carbon nanotubes (CNTs) and flame retardancy of layered double hydroxide (LDH) in epoxy resin (EP), organic nickel‐iron layered double hydroxide (ONiFe‐LDH‐CNTs) hybrids were assembled through co‐precipitation. These hybrids were further used as reinforcing filler in EP. EP/ONiFe‐LDH‐CNTs nanocomposites containing 4 wt% of ONiFe‐LDH‐CNTs with different ratios of ONiFe‐LDH and CNTs were prepared by ultrasonic dispersion and program temperature curing. The structure and morphology of the obtained hybrids were characterized by different techniques. The dispersion of nanofillers in the EP matrix was observed by transmission electron microscopy (TEM). The results revealed a coexistence of exfoliated and intercalated ONiFe‐LDH‐ CNTs in polymer matrix. Strong combination of the above nanofillers with the EP matrix provided an efficient thermal and flame retardant improvement for the nanocomposites. It showed that EP/ONiFe‐LDH‐CNTs nanocomposites exhibited superior flame retardant and thermal properties compared with EP. Such improved thermal properties could be attributed to the better homogeneous dispersion, stronger interfacial interaction, excellent charring performance of ONiFe‐LDH and synergistic effect between ONiFe‐LDH and CNTs.  相似文献   

12.
One-dimensional carbon nano-materials, in particular carbon nanotubes (CNTs) and carbon nanofibers (CNFs), are of scientific and technological interest due to their satisfactory properties and ability to serve as templates for directed assembly. In this work, linear high density polyethylene (PE) was periodically decorated on CNTs and CNFs using a supercritical carbon dioxide (scCO2)antisolvent-induced polymer epitaxy (SAIPE) method, leading to nano-hybrid shish-kebab (NHSK) structures. The formation mechanism of different morphologies of PE lamellae on CNTs and CNFs has been discussed. Palladium nanoparticles were synthesized and immobilized on the PE/CNF NHSK structure with the assistance of scCO2. The obtained hierarchical nano-hybrid architecture may find applications in microfabrication and other related fields.  相似文献   

13.
The effects of the compatibilizer polyethylene grafted with glycidyl methacrylate (PE‐g‐GMA) on the properties of low‐density polyethylene (LDPE) (virgin and reprocessed)/corn starch blends were studied. LDPE (virgin and reprocessed)/corn starch blends containing 30, 40 and 50 wt% starch, with or without compatibilizer, were prepared by extrusion and characterized by the melt flow index (MFI), tensile test, dynamic mechanical analysis (DMTA) and light microscopy. The addition of starch to LDPE reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The decreases in the MFI and tensile properties were most evident when 40 and 50 wt% starch were added. Blends containing 3 wt% PE‐g‐GMA had higher tensile strength values and lower MFI values than blends without compatibilizer. Light microscopy showed that increasing the starch content resulted in a continuous phase of starch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Preparation and analysis of morphology, mechanical, and electrical properties of nanocomposites based on ethylene vinyl acetate (EVA) copolymer and commercial multiwalled carbon nanotubes (CNTs) was achieved. The used techniques for obtaining nanocomposites were the conventional melt‐mixing and the in situ ethylene polymerization/coating reaction, as catalyzed directly from CNT surface, with different polyethylene content (i.e. 55.0% and 66.6%). Nanocomposites were also prepared using crude CNTs. The incorporation in the molten state of such polyethylene surface‐coated CNTs, used as “masterbatch,” in EVA was demonstrated a good strategy for allowing the complete destructuring of the native bundle‐like aggregates, leading to the preparation of polymer nanocomposites with largely improved properties, even at very low nanofiller content. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a considerable low‐temperature toughness enhancement of isotactic polypropylene (iPP) was achieved by adding 30 wt% ethylene propylene diene monomer rubber (EPDM) as well as traces of β‐nucleating agent (β‐NAs) and carbon nanotubes (CNTs). The impact strength of the iPP/30 wt% EPDM blend with 0.1 wt% β‐NAs reached 6.57 kJ/m2 at ?20°C, over 2.5 times of pure iPP. A slightly improved impact strength was further found in the β‐nucleated iPP/30 wt% EPDM at the presence of 0.05 wt% CNTs. The presence of traces of CNTs, β‐NAs, and EPDM displayed synergistic low‐temperature toughness reinforcement effect on the iPP blends. The underlying toughening mechanism was attributed to the formation of a great amount of voids and plastic deformation of iPP matrix affected by CNTs, β‐NAs, and EPDM. Our work provided a feasible strategy to significantly increase the low‐temperature toughness of iPP.  相似文献   

16.
To reveal the enhancement effect of graphene oxide (GO) in polymer nanofiber yarns, polyacrylonitrile (PAN)/GO nanofibers with different GO content (0.1‐0.5 wt%) were electrospun. The alignment of PAN chains and GO in nanofibers was enhanced by hot stretching of the yarn in dry conditions. The microstructure of the composite nanofiber yarns was investigated through X‐ray diffraction, polarized Fourier transform infrared spectroscopy and transmission electron microscopy. The results demonstrated that the hot stretching above Tg of PAN precursor lead to the increased orientation‐induced crystallization and alignment of PAN chain and GO. The yarn with 0.1 wt% GO and stretched by 4 times its length obtained the highest strength and modules (310.88 ± 24.68 MPa and 7.24 ± 0.55 GPa), which were 600% and 500% higher than those of the as‐electrospun pure PAN yarn. The most promising tensile properties found in hot stretched yarns with low GO content was because the strong interaction occurred between PAN molecules and oxygen‐containing functional groups. Indirect evidence of GO aggregation was also presented, which adversely affected the mechanical properties at higher GO content. Composite nanofiber yarns were sewable and weavable, and could be used as a new generation of composite reinforcement after pyrolysis.  相似文献   

17.
Continuous conductive gold nanofibers are prepared via the “tubes by fiber templates” process. First, poly(l‐lactide) (PLLA)‐stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p‐xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat‐induced transition from continuous gold‐loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  相似文献   


18.
A thermotropic liquid crystalline polyester (TLCP)/organoclay nanocomposite was synthesized via in situ intercalation polycondensation of diethyl‐2,5‐dihexyloxyterephthalic acid and 4,4′‐biphenol in the presence of organically modified montmorillonite (MMT). The organoclay, C18‐MMT, was prepared by the ion exchange of Na+‐MMT with octadecylamine chloride (C18‐Cl?). TLCP/C18‐MMT nanocomposites were prepared to examine the variations of the thermal properties, morphology, and liquid crystalline phases of the nanocomposites with clay content in the range of 0–7 wt%. It was found that the addition of only a small amount of organoclay was sufficient to improve the thermal behavior of the TLCP hybrids, with maximum enhancement being observed at 1 wt% C18‐MMT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   

20.
Xiong  ZhuoYue  Sun  Yao  Wang  Li  Guo  ZhaoXia  Yu  Jian 《中国科学:化学(英文版)》2012,55(5):807-812
Carbon nanotube (CNT)-filled polycarbonate (PC)/poly(butylene terephthalate) (PBT) and polycarbonate (PC)/poly(ethylene terephthalate) (PET) blends containing 1 wt% CNTs over a wide range of blend compositions were prepared by melt mixing in a torque rheometer to investigate the structure-electrical conductivity relationship. Field emission scanning electron microscopy was used to observe the blend morphology and the distribution of CNTs. The latter was compared with the thermodynamic predictions through the calculation of wetting coefficients. It was found that CNTs are selectively localized in the polyester phase and conductive blends can be obtained over the whole composition range (20 wt%, 50 wt% and 80 wt% PBT) for CNT-filled PC/PBT blends, while conductive CNT-filled PC/PET blends can only be obtained when PET is the continuous phase (50 wt%, 80 wt% PET). The dramatic difference in the electrical conductivity between the two types of CNT-filled PC/polyester blends at a low polyester content (20 wt%) was explained by the size difference of the dispersed phases on the basis of the transmission electron microscope micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号