首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Since the end of 2010, more than 20 synthetic cannabimimetics have been identified in ‘Spice’ products, demonstrating the enormous dynamic in this field. In an effort to cope with the problem, many countries have already undertaken legal measures by putting some of these compounds under control. Nevertheless, once a number of compounds were scheduled, they were soon replaced by other synthetic cannabinoids. In this article, we report the identification of a new – and due to its substitution pattern rather uncommon – cannabimimetic found in several ‘herbal incense’ products. The GC–EI mass spectrum first led to misidentification as the alpha‐methyl‐derivative of JWH‐250. However, since both substances show different retention indices, thin‐layer chromatography was used to isolate the unknown compound. After application of nuclear magnetic resonance spectroscopy, high‐resolution MS and GC–MS/MS techniques, the compound was identified as 3‐(1‐adamantoyl)‐1‐pentylindole, a derivative of JWH‐018 carrying an adamantoyl moiety instead of a naphthoyl group. This finding supports that the listing of synthetic cannabinoids as prohibited substances triggers the appearance of compounds with uncommon substituents. Moreover, it emphasizes the necessity of being aware of the risk of misidentification when using techniques sometimes providing only limited structural information like GC–MS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
One of the many issues of designer drugs of abuse like synthetic cannabinoids (SCs) such as JWH‐018 is that details on their metabolism has yet to be fully elucidated and that multiple metabolites exist. The presence of isomeric compounds poses further challenges in their identification. Our group has previously shown the effectiveness of gas chromatography‐electron ionization‐tandem mass spectrometry (GC‐EI‐MS/MS) in the mass spectrometric differentiation of the positional isomers of the naphthoylindole‐type SC JWH‐081, and speculated that the same approach could be used for the metabolite isomers. Using JWH‐018 as a model SC, the aim of this study was to differentiate the positional isomers of its hydroxyindole metabolites by GC‐MS/MS. Standard compounds of JWH‐018 and its hydroxyindole metabolite positional isomers were first analyzed by GC‐EI‐MS in full scan mode, which was only able to differentiate the 4‐hydroxyindole isomer. Further GC‐MS/MS analysis was performed by selecting m/z 302 as the precursor ion. All four isomers produced characteristic product ions that enabled the differentiation between them. Using these ions, MRM analysis was performed on the urine of JWH‐018 administered mice and determined the hydroxyl positions to be at the 6‐position on the indole ring. GC‐EI‐MS/MS allowed for the regioisomeric differentiation of the hydroxyindole metabolite isomers of JWH‐018. Furthermore, analysis of the fragmentation patterns suggests that the present method has high potential to be extended to hydroxyindole metabolites of other naphthoylindole type SCs in identifying the position of the hydroxyl group on the indole ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
After the discovery of synthetic cannabimimetic substances in 'Spice'-like herbal mixtures marketed as 'incense' or 'plant fertilizer' the active compounds have been declared as controlled substances in several European countries. As expected, a monitoring of new herbal mixtures which continue to appear on the market revealed that shortly after control measures have been taken by legal authorities, other compounds were added to existing mixtures and to new products. Several compounds of the aminoalkylindole type have been detected so far in herbal mixtures but still their consumption cannot be detected by commonly used drug-screening procedures, encouraging drug users to substitute cannabis with those products. There is a increasing demand on the part of police authorities, hospitals and psychiatrists for detection and quantification of synthetic cannabinoids in biological samples originating from psychiatric inpatients, emergency units or assessment of fitness to drive. Therefore, a liquid chromatography-tandem mass spectrometry method after liquid-liquid extraction for the quantitation of JWH-015, JWH-018, JWH-073, JWH-081, JWH 200, JWH-250, WIN 55,212-2 and methanandamide and the detection of JWH-019 and JWH-020 in human serum has been developed and fully validated according to guidelines for forensic toxicological analyses. The method was successfully applied to 101 serum samples from 80 subjects provided by hospitals, detoxification and therapy centers, forensic psychiatric centers and police authorities. Fifty-seven samples or 56.4% were found positive for at least one aminoalkylindole. JWH-019, JWH-020, JWH-200, WIN 55,212-2 and methanandamide were not detected in any of the analyzed samples.  相似文献   

5.
The analysis of synthetic cannabinoids in human matrices is of particular importance in the fields of forensic and clinical toxicology since cannabis users partly shift to the consumption of ‘herbal mixtures’ as a legal alternative to cannabis products in order to circumvent drug testing. However, comprehensive methods covering the majority of synthetic cannabinoids already identified on the drug market are still lacking. In this article, we present a fully validated method for the analysis of 30 synthetic cannabinoids in human serum utilizing liquid‐liquid extraction and liquid chromatography‐electrospray ionization tandem mass spectrometry. The method proved to be suitable for the quantification of 27 substances. The limits of detection ranged from 0.01 to 2.0 ng/mL, whereas the lower limits of quantification were in the range from 0.1 to 2.0 ng/mL. The presented method was successfully applied to 833 authentic serum samples during routine analysis between August 2011 and January 2012. A total of 227 (27%) samples was tested positive for at least one of the following synthetic cannabinoids: JWH‐018, JWH‐019, JWH‐073, JWH‐081, JWH‐122, JWH‐200, JWH‐203, JWH‐210, JWH‐307, AM‐2201 and RCS‐4. The most prevalent compounds in positive samples were JWH‐210 (80%), JWH‐122 (63%) as well as AM‐2201 (29%). Median serum concentrations were all below 1.0 ng/mL. These findings demonstrate a significant shift of the market of synthetic cannabinoids towards substances featuring a higher CB1 binding affinity and clearly emphasize that the analysis of synthetic cannabinoids in serum or blood samples requires highly sensitive analytical methods covering a wide spectrum of substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Since 2004, a number of herbal blends containing different synthetic compounds mimicking the pharmacological activity of cannabinoids and displaying a high toxicological potential have appeared in the market. Their availability is mainly based on the so‐called “e‐commerce”, being sold as legal alternatives to cannabis and cannabis derivatives. Although highly selective, sensitive, accurate, and quantitative methods based on GC–MS and LC–MS are available, they lack simplicity, rapidity, versatility and throughput, which are required for product monitoring. In this context, matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) offers a simple and rapid operation with high throughput. Thus, the aim of the present work was to develop a MALDI‐TOF MS method for the rapid qualitative direct analysis of herbal blend preparations for synthetic cannabinoids to be used as front screening of confiscated clandestine preparations. The sample preparation was limited to herbal blend leaves finely grinding in a mortar and loading onto the MALDI plate followed by addition of 2 µl of the matrix/surfactant mixture [α‐cyano‐4‐hydroxy‐cinnamic acid/cetyltrimethylammonium bromide (CTAB)]. After drying, the sample plate was introduced into the ion source for analysis. MALDI‐TOF conditions were as follows: mass spectra were analyzed in the range m/z 150–550 by averaging the data from 50 laser shots and using an accelerating voltage of 20 kV. The described method was successfully applied to the screening of 31 commercial herbal blends, previously analyzed by GC–MS. Among the samples analyzed, 21 contained synthetic cannabinoids (namely JWH‐018, JWH‐073, JWH‐081, JWH‐250, JWH‐210, JWH‐019, and AM‐694). All the results were in agreement with GC–MS, which was used as the reference technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography–diode array detector–quadruple‐ion trap–mass spectrometry/mass spectrometry (LC‐DAD‐Q‐TRAP‐MS/MS). An enhanced mass scan–enhanced product ion scan with information‐dependent acquisition mode in a Q‐TRAP‐MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Herbal mixtures like ‘Spice’ with potentially bioactive ingredients were available in many European countries since 2004 and are still widely used as a substitute for cannabis, although merchandized as ‘herbal incense’. After gaining a high degree of popularity in 2008, big quantities of these drugs were sold. In December 2008, synthetic cannabinoids were identified in the mixtures which were not declared as ingredients: the C8 homolog of the non‐classical cannabinoid CP‐47,497 (CP‐47,497‐C8) and a cannabimimetic aminoalkylindole called JWH‐018. In February 2009, a few weeks after the German legislation put these compounds and further pharmacologically active homologs of CP‐47,497 under control, another cannabinoid appeared in ‘incense’ products: the aminoalkylindole JWH‐073. In this paper, the results of monitoring of commercially available ‘incense’ products from June 2008 to September 2009 are presented. In this period of time, more than 140 samples of herbal mixtures were analyzed for bioactive ingredients and synthetic cannabimimetic substances in particular. The results show that the composition of many products changed repeatedly over time as a reaction to prohibition and prosecution of resellers. Therefore neither the reseller nor the consumer of these mixtures can predict the actual content of the ‘incense’ products. As long as there is no possibility of generic definitions in the controlled substances legislation, further designer cannabinoids will appear on the market as soon as the next legal step has been taken. This is affirmed by the recent identification of the aminoalkylindoles JWH‐250 and JWH‐398. As further cannabinoids can be expected to occur in the near future, a continuous monitoring of these herbal mixtures is required. The identification of the synthetic opioid O‐desmethyltramadol in a herbal mixture declared to contain ‘kratom’ proves that the concept of selling apparently natural products spiked with potentially dangerous synthetic chemicals/pharmaceuticals is a continuing trend on the market of ‘legal highs’. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Analytical aspects related to the assay of pentoxifylline (PTX), lisofylline (M1) and carboxypropyl dimethylxanthine (M5) metabolites are discussed through comparison of two alternative analytical methods based on liquid chromatography separation and atmospheric pressure electrospray ionization tandem mass spectrometry detection. One method is based on a ‘pure’ reversed‐phase liquid chromatography mechanism, while the second one uses the additional polar interactions with embedded amide spacers linking octadecyl moieties to the silicagel surface (C‐18 Aqua stationary phase). In both cases, elution is isocratic. Both methods are equally selective and allows separation of unknowns (four species associated to PTX, two species associated to M1) detected through specific mass transitions of the parent compounds and owning respective structural confirmation. Plasma concentration–time patterns of these compounds follow typical metabolic profiles. It has been advanced that in‐vivo formation of conjugates of PTX and M1 is possible, such compounds being cleaved back to the parent ones within the ion source. The first method was associated with a sample preparation procedure based on plasma protein precipitation by strong organic acid addition. The second method used protein precipitation by addition of a water miscible organic solvent. Both analytical methods were fully validated and used to assess bioequivalence between a prolonged release generic formulation and the reference product, under multidose and single dose approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
For analysis of hair samples derived from a pilot study (‘in vivo’ contamination of hair by sidestream marijuana smoke), an LC‐MS/MS method was developed and validated for the simultaneous quantification of Δ9‐tetrahydrocannabinolic acid A (THCA‐A), Δ9‐tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD). Hair samples were extracted in methanol for 4 h under occasional shaking at room temperature, after adding THC‐D3, CBN‐D3, CBD‐D3 and THCA‐A‐D3 as an in‐house synthesized internal standard. The analytes were separated by gradient elution on a Luna C18 column using 0.1% HCOOH and ACN + 0.1% HCOOH. Data acquisition was performed on a QTrap 4000 in electrospray ionization‐multi reaction monitoring mode. Validation was carried out according to the guidelines of the German Society of Toxicological and Forensic Chemistry (GTFCh). Limit of detection and lower limit of quantification were 2.5 pg/mg for THCA‐A and 20 pg/mg for THC, CBN and CBD. A linear calibration model was applicable for all analytes over a range of 2.5 pg/mg or 20 pg/mg to 1000 pg/mg, using a weighting factor 1/x. Selectivity was shown for 12 blank hair samples from different sources. Accuracy and precision data were within the required limits for all analytes (bias between ?0.2% and 6.4%, RSD between 3.7% and 11.5%). The dried hair extracts were stable over a time period of one to five days in the dark at room temperature. Processed sample stability (maximum decrease of analyte peak area below 25%) was considerably enhanced by adding 0.25% lecithin (w/v) in ACN + 0.1% HCOOH for reconstitution. Extraction efficiency for CBD was generally very low using methanol extraction. Hence, for effective extraction of CBD alkaline hydrolysis is recommended. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A very accurate and selective LC‐MS/MS method was developed and validated for the quantification of 2′‐C‐modified nucleoside triphosphate in liver tissue samples. An efficient pretreatment procedure of liver tissue samples was developed, using a fully automated SPE procedure with 96‐well SPE plate (weak anion exchange sorbent, 30 mg). Nucleotide hydrophilic interaction chromatography has been performed on an aminopropyl column (100 mm×2.0 mm, 3 μm) using a gradient mixture of ACN and ACN/water (5:95 v/v) with 20 mM ammonium acetate at pH 9.45 as mobile phase at 300 μL/min flow rate. The 2′‐C‐modified nucleoside triphosphate was detected in the negative ESI mode in multiple reaction monitoring (MRM) mode. Calibration curve was linear over the 0.05–50 μM concentration range. Satisfying results, confirming the high reliability of the established LC‐MS/MS method, were obtained for intraday precision (CV = 2.5–9.1%) and accuracy (92.6–94.8%) and interday precision (CV = 9.6–11.5%) and accuracy (94.4–102.4%) as well as for recovery (82.0–112.6%) and selectivity. The method has been successfully applied for pharmacokinetic studies of 2′‐C‐methyl‐cytidine‐triphosphate in liver tissue samples.  相似文献   

16.
A novel, rapid and sensitive LC‐MS/MS method for the determination of 1‐O‐Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol–5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60–800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half‐lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration–time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method has been developed for the determination of 5,10‐methylenetetrahydrofolate (methyleneTHF), tetrahydrofolate (THF) and 5‐methyltetrahydrofolate (methylTHF) in colorectal mucosa and tumor tissues. The folate extraction method includes homogenization, heat and folate conjugase treatment to hydrolyze polyglutamyl folate to monoglutamyl folate. Before analysis on LC‐MS/MS, simple and fast sample purification with ultrafiltration (molecular weight cut‐off membrane, 10 kDa) was performed. Folates were detected and quantified using positive electrospray. The method described in the present paper was successfully applied to determine the level of three folate monoglutamates in mucosa and tumor samples from 77 colorectal cancer patients, starting from a limited amount of tissue. The results showed that the LC‐MS/MS method has a great advantage over other previously used methods because of its high sensitivity and selectivity. Significantly higher levels of methyleneTHF and THF were found in tumor compared with matched mucosa tissues. Folate levels in adjacent mucosa were associated with tumor location, age and gender. The correlation between folate levels and tumor site further strengthens the fact that development of right‐ and left‐sided tumors follows different pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid, robust and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for bioanalysis of TJ0711, a novel vasodilatory β‐blocker in dog plasma. This assay is able to chromatographically separate TJ0711 from its isobaric metabolite as well as glucuronide conjugates. Chromatographic separation was achieved on a Welch Ultimate‐XB C18 column (2.1 × 100 mm, 3 μm). The analyte and internal standard (propranolol) were extracted from plasma by liquid–liquid extraction using ethyl acetate. The mass spectrometric detection was carried out in positive ion multiple reaction monitoring mode. Good linearity was obtained over the concentration range of 0.5–500 ng/mL (r > 0.99) for TJ0711. Moreover, the method had good accuracy (RE ranging from −2.70 to −0.32%) and precision (RSD < 7.55%). TJ0711 was stable in dog plasma for at least 6 h at ambient temperature, for at least 30 days at −20°C and after three freeze–thaw cycles. This method was successfully applied to a preclinical pharmacokinetic study and the results demonstrated linear pharmacokinetics of TJ0711 over a dose range from 0.03 to 0.3 mg/kg. No significant gender differences were observed in TJ0711 plasma pharmacokinetic parameters.  相似文献   

19.
The anticancer drug capecitabine and its metabolites [including the active metabolite 5‐fluorouracil (5‐FU)] display high pharmacokinetic inter‐patient variability. Such variability, which may lead to treatment failure or toxicity, could need drug concentration measurement to individualize dosing regimen. However, usual assay methods are often long and fastidious. A simultaneous and cost‐effective method was thus developed for the determination of the concentrations of these compounds in human plasma. Compounds were extracted via a classic liquid–liquid extraction. Chromatographic analysis was performed on a C18 reverse phase column with detection by atmosphere pressure chemical ionization LC‐MS/MS. Our method allows a good chromatographic separation of the compounds and was fully validated following Food and Drug Administration (FDA) recommendations (good selectivity, no carry‐over, linearity of the calibration curves without weighting, deviations from nominal concentrations of standard samples lower than 15%, intra‐ and inter‐assay precision and accuracy lower than 15%). Recovery and stability were also acceptable following the FDA guidelines. A matrix effect impairing the determination of 5‐FU was avoided by using a stable isotopic derivative of 5‐FU as internal standard. Interestingly, this method allows detection of TetraHydroUridine, an inhibitor of ex vivo degradation of metabolites, which is essential for the stability, the adequate conditioning of blood samples and for good laboratory practice, essential in routine determination. This method seems usable to routinely determine concentrations of capecitabine and its metabolites in blood and may be helpful in further studies aiming at performing therapeutic drug monitoring. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A specific and automated method was developed to quantify the anticonvulsants gabapentin, pregabalin and vigabatrin simultaneously in human serum. Samples were prepared with a protein precipitation. The hydrophilic interaction chromatography (HILIC) with a mobile phase gradient was used to divide off ions of the matrix and for separation of the analytes. Four different HILIC‐columns and two different column temperatures were tested. The Tosoh‐Amid column gave the best results: single small peaks. The anticonvulsants were detected in the multiple reaction monitoring mode (MRM) with ESI‐MS‐MS. Using a volume of 100 μL biological sample the lowest point of the standard curve, i.e. the lower LOQs were 312 ng/mL. The described HILIC‐MS‐MS method is suitable for therapeutic drug monitoring and for clinical and pharmcokinetical investigations of the anticonvulsives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号