首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field, and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall conductivity sigma s and charge conductivity sigma c are related through sigma s=[2pi variant /(3mc2)]sigma2c with m being the bare electron mass. The theoretically computed value is in agreement with experiment.  相似文献   

2.
As far as the electrical conductivity is concerned, solids are usually classified as metals, semiconductors, or insulators. In metals the concentration of the charge carriers responsible for the electrical conductivity is large, whereas in semiconductors and insulators the carrier concentration is much smaller. The distinction between semiconductors and insulators is based on a difference in the nature of the conductivity. For semiconductors the charge carriers (electrons or holes) occupy the states of energy bands; these states are not Iocalized on particular atoms, but spread throughout the entire crystal. In such a situation the mobility of the carriers can be quite high and would, in fact, be infinite in a rigid periodic lattice; in this model the thermal motion of the atoms induces a scattering of the carriers and thus limits the conductivity to finite values. The classical examples of semiconductors are the elements Si and Ge and compounds such as GaAs, InSb, CdTe, ZnS, etc.  相似文献   

3.
《Physics letters. A》2006,360(2):348-351
The thermal conductivity and infrared transmission spectra of La0.67Ca0.33MnO3 are investigated systematically. The thermal conductivity increases abruptly as the temperature is decreased through the Curie temperature. The effective charge carriers number and the frequency of transverse optic phonon corresponding to the stretching mode also increase dramatically along with decreasing temperature near Curie temperature. Combining our observation with previous reported results, we ascribe the abrupt change of thermal conductivity to the itinerating of the charge carriers due to the remarkable reduction of Jahn–Teller distortion below the Curie temperature.  相似文献   

4.
《Current Applied Physics》2003,3(2-3):219-222
A temperature variation of dc conductivity in the range 77–300 K has been carried out in order to explore the mechanism of charge transport in polyaniline (PAN) doped with sulfuric acid. The variable range hopping (VRH) exponent changes as the transition of the PAN lattice takes place in a narrow pH range thereby indicating that the charge transport is crucially composition dependent. A decrease in activation energy has been observed as the doping level is increased. Spin concentration of charge carriers determined by electron spin resonance spectroscopy has also been found to depend on the doping level of the specimen. Polarons and bipolarons formed during the doping process are the charge carriers in this system. The temperature dependence of dc conductivity and activation energy data are indicative of existence of both VRH and mixed conduction for various doping levels in these samples.  相似文献   

5.
吴子华  谢华清*  曾庆峰 《物理学报》2013,62(9):97301-097301
ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率. 关键词: 热电材料 ZnO 纳米复合 热导率  相似文献   

6.
We study the dynamics of the charged intercalate molecules. The model for the intercalate is a two dimensional plasma with the appropriate screening due to the charge carriers in the graphite layers. The dependence of the dispersion relation on stage and charge transfer is discussed and the relation of these modes to conductivity is pointed out.  相似文献   

7.
8.
We investigated relaxation of free charge carriers in pure crystalline diamond exposed to VUV irradiation of high order harmonics of femtosecond Ti:Sa laser in the spectral range 17–32 eV. Electron–hole pairs, possessing a significant kinetic energy, are generated in the material via direct interband transitions, relaxation of which is monitored by means of induced conductivity in the bulk and photoemission from the surface of the material. The experimental data provided by these complementary techniques are compared and discussed in terms of the competition between ionization and conductivity looking for evidences of multiplication of free charge carriers due to impact ionization. PACS 42.65.Re; 72.20.Jv; 72.40.+w; 79.60.-i  相似文献   

9.
The thermally stimulated conductivity of a pure CaWO4-crystal was investigated after irradiation with X-rays at low temperature. The spectral behaviour of the conductivity correlated to the EPR-results gives information about the trap depth and the charge carriers which are responsable for the conductivity. The conductivity and luminescence phenomena are discussed in a simple model.  相似文献   

10.
T. Bak  J. Nowotny  C. C. Sorrell  M. F. Zhou 《Ionics》2004,10(5-6):334-342
The present work describes the electrical conductivity of undoped CaTiO3 in terms of the electrical conductivity components corresponding to electrons, electron holes and ionic charge carriers in the temperature range 973 K — 1323 K and under controlled oxygen partial pressure (10 Pa — 72 kPa). These data are considered in terms of the transference numbers of the respective charge carriers. It appears that the ionic conductivity component assumes maximum at the n-p transition when the ionic transfer number reaches 50% of the total conductivity value at 1323 K. The present study also includes the determination of the activation energy of the conductivity component related to ions (162.1 kJ/mol), electrons (134.2 kJ/mol) and electron holes (86.2 kJ/mol). The data obtained in this work indicate that undoped CaTiO3 exhibits a substantial level of ionic conduction that cannot be ignored in a quantitative analysis of electrical conductivity data.  相似文献   

11.
Regularities are studied in charge transport due to the hopping conduction of holes along two-dimensional layers of Ge quantum dots in Si. It is shown that the temperature dependence of the conductivity obeys the Efros-Shklovskii law. It is found that the effective localization radius of charge carriers in quantum dots varies nonmonotonically upon filling quantum dots with holes, which is explained by the successive filling of electron shells. The preexponential factor of the hopping conductivity ceases to depend on temperature at low temperatures (T<10 K) and oscillates as the degree of filling quantum dots with holes varies, assuming values divisible by the conductance quantum e2/h. The results obtained indicate that a transition from phonon-assisted hopping conduction to phononless charge transfer occurs as the temperature decreases. The Coulomb interaction of localized charge carriers has a dominant role in these phononless processes.  相似文献   

12.
Results are given on experiments on the effect of X-rays on the conductivity and concentration of charge carriers and their mobility in monocrystalline silicon with electron and hole conductivity.It is shown that changes in the parameters studied due to X-rays depend on the intensity of the irradiation and are similar in hole and in electron silicon.  相似文献   

13.
The problem of high-frequency conductivity of a thin cylindrical semiconductor wire has been solved by the kinetic method. The diffuse-specular mechanism of reflection of charge carriers from the inner surface of the wire has been considered. Calculations have been performed for an n-type (p-type) nondegenerate semiconductor with a standard spherically symmetric energy band. The ratio between the cross-section radius of the wire and the mean free path of charge carriers is assumed to be arbitrary.  相似文献   

14.
The electrodynamic response of spin glasses (in the form of thin AuFe films) in the terahertz frequency range has been studied using backward-wave oscillator (BWO) spectroscopy (10–40 cm?1) and optical ellipsometry (5000–33000 cm?1) techniques at temperatures from 5 to 295 K. The room-temperature dynamic conductivity spectra of AuFe films are typical of metals and can be described within the framework of the Drude theory of conduction by free charge carriers. Changes in the microscopic parameters of charge carriers in AuFe films with increasing iron content, which are related to additional scattering of carriers on the impurity magnetic moments, have been studied on the quantitative level, including the carrier relaxation frequency and characteristic time, plasma frequency, and conductivity. It is established that the spin-glass phase at a temperature of ~5 K exhibits dispersion of the conductivity in the frequency range 10–40 cm?1, which can be related to the appearance of a mobility gap in the subsystem of free electrons involved in the RKKY interaction between magnetic centers (Fe atoms).  相似文献   

15.
Sodium-ion-conducting poly(ethylene oxide) (PEO)-based solid polymer electrolyte films mixed with salt sodium thiocyanate (NaSCN) have been prepared by solution-cast method. Films were characterized in detail using optical microscopy, differential scanning calorimetry, and impedance spectroscopy. The drop in ionic conductivity with increasing salt concentration is supported by a decrease in number of charge carriers. Dielectric constant is supported by decreases in numbers of charge carriers and increase in mobility. The maximum ionic conductivity and number of charge carriers for material are found 9.86 × 10?6 S/m and 1.21 × 1020, respectively, for weight % ratio (95:05) of PEO:NaSCN polymer salt complex. The maximum mobility of material is found 2.58 × 10?6 m2/Vs for weight % ratio (80:20) of PEO:NaSCN polymer salt complex.  相似文献   

16.
Influences of topological defect and dislocation on conductivity behavior of charge carriers in external electromagnetic fields are studied.Particularly the quantum Hall effect is investigated in detail.It is found that the nontrivial deformations of spacetime due to topological defect and dislocation produce an eiectric current at the leading order of perturbation theory.This current then induces a deformation on the Hall conductivity.The corrections on the Hall conductivity depend on the external electric fields,the size of the sample and the momentum of the particle.  相似文献   

17.
The (conduction) mobility of majority charge carriers in porous silicon layers of the n and p types is estimated by joint measurements of electrical conductivity and free charge carrier concentration, which is determined from IR absorption spectra. Adsorption of donor and acceptor molecules leading to a change in local electric fields in the structure is used to identify the processes controlling the mobility in porous silicon. It is found that adsorption of acceptor and donor molecules at porous silicon of the p and n types, respectively, leads to a strong increase in electrical conductivity, which is associated with an increase in the concentration of free carrier as well as in their mobility. The increase in the mobility of charge carriers as a result of adsorption indicates the key role of potential barriers at the boundaries of silicon nanocrystals and may be due to a decrease in the barrier height as a result of adsorption.  相似文献   

18.
The thermoelectric power and electrical conductivity measurements of Zn-substituted Mg-ferrites having the general formula Mg1−xZnxFe2O4 (where x=0, 0.2, 0.4 and 0.6) were carried out from room temperature to 773 K. The Seebeck coefficient is positive for all the compositions showing that these ferrites behave as p-type semiconductors and the majority charge carriers are holes. The temperature variation of the Seebeck coefficient is also discussed. The Fermi energy (EF); the density of charge carriers (n) and the carriers mobility (μ) were determined for the studied system. The variation of log σ with reciprocal of temperature shows a discontinuity at Curie temperature. The DC electrical conductivity increases with increasing temperature ensuring the semiconducting nature of the samples. The Curie temperature determined from DC electrical conductivity was found in satisfactory agreement with that determined from initial magnetic permeability measurements. This transition temperature is found to decrease with increasing Zn concentration. The activation energy in the paramagnetic region is found to be lower than that in ferrimagnetic region. The variation of room temperature conductivity with composition indicates that conductivity increases with increasing Zn content. The dependence of the electrical conductivity of Mg-Zn ferrite on Zn content is explained on the basis of the cation distribution.  相似文献   

19.
We present a theoretical study of gap opening in the zeroth Landau level in gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic field couples with the valley pseudospin degree of freedom of the charge carriers leading to the pseudo-Zeeman interaction. To investigate its role in transport at the charge neutrality point (CNP), we study the integer quantum Hall effect in gapped graphene in an angular magnetic field in the presence of pseudo-Zeeman interaction. Analytical expressions are derived for the Hall conductivity using the Kubo-Greenwood formula. We also determine the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that pseudo-Zeeman splitting leads to a minimum in the collisional conductivity at high magnetic fields and a zero plateau in the Hall conductivity. Evidence for activated transport at CNP is found from the temperature dependence of the collisional conductivity.  相似文献   

20.
Experimental data are analyzed on the hopping transport of holes in two-dimensional layers of Ge/Si(001) quantum dots (QDs) under conditions of the long-range Coulomb interaction of charge carriers localized in QDs, when the temperature dependence of the conductivity obeys the Efros-Shklovskii law. It is found that the parameters of hopping conduction significantly deviate from the predictions of the model of one-electron excitations in “Coulomb glasses.” Many-particle Coulomb correlations associated with the motion of holes localized in QDs play a decisive role in the processes of hopping charge transfer between QDs. These correlations lead to a substantial decrease in the Coulomb barriers for the tunneling of charge carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号