首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray absorption spectra from iron donor impurities in mercury selenide have been analyzed in a concentration range where the Fermi energy of conduction electrons is close to the energy of the donor d level. At high impurity concentrations, the resulting spectrum corresponds to the completely filled donor state and coincides with the spectrum of a bivalent iron ion. A transition to an intermediate-filling state is observed with decreasing the concentration. The spectra are quantitatively analyzed in a model implying the existence of a mixture of ions that contain and do not contain a donor electron in a bound state. It has been found that such a model is significantly inconsistent with the experimental data. It has been shown that the concentration dependence of the x-ray spectra corresponds to the manifestation of the significant hybridization of localized and delocalized donor electron states in the conduction band.  相似文献   

2.
Segregated carbon on the Fe(100) surface has been studied by means of X-rayand ultraviolet photoelectron (XPS, UPS), Auger electron (AES) and electron energy loss spectroscopy (ELS). For comparison, the surfaces of polycrystalline graphite and of iron carbides stabilized by chromium or manganese additions have been investigated. On the iron surface, carbon exists as a chemisorbed state or graphitic multilayer. The two states exhibit different energy positions in XPS, and are different in energy positions and lineshapes in AES and ELS. During the transition of graphitic carbon to chemisorbed carbon on Fe(100) a novel coverage-dependent Auger feature is reported. The spectra of graphitic carbon on the iron surface always coincide with those of solid graphite. The carbon Auger transitions of chemisorbed carbon and of iron carbides exhibit very similar lineshapes, but the energy positions of both states differ in AES as well as XPS.  相似文献   

3.
We have reported on the results of a complex investigation of iron disilicide FeSi2 using characteristic electron energy loss spectroscopy, inelastic electron scattering cross section spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that the main peak in the spectra of inelastic electron scattering for FeSi2 is a superposition of two unresolved peaks, viz., surface and bulk plasmons. An analysis of the fine structure of the spectra of inelastic electron scattering cross section by their decomposition into Lorentzlike Tougaard peaks has made it possible to quantitatively estimate the contributions of individual energy loss processes to the resulting spectrum and determine their origin and energy.  相似文献   

4.
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.  相似文献   

5.
《Surface science》1987,181(3):559-572
Ultraviolet photoelectron spectroscopy (UPS), electron energy loss spectroscopy (EELS) and surface extended energy loss fine structure (SEELFS) were used to study the deposition of Fe on MgO(100) and to identify the surface compounds formed after reaction of CO/H2 (1:1). The clean MgO(100) surface was characterized using the above techniques and the effect of argon ion bombardment damage to the surface was investigated. With the deposition of iron, metallic characteristics appear in the photoemission spectrum; the electron energy loss peaks of the MgO(100) substrate diminish in intensity with no significant shifts in loss energies. Fine structure analysis of the oxygen K-edge of the MgO(100) surface with less than 2 monolayers (ML) of iron suggests that the iron atoms bond with the oxygen at the surface of the MgO(100) lattice. For less than 4 ML of iron, the EEL spectra show that the deposited iron is oxidized after reaction of CO/H2. Higher iron coverages result in carburization of the surface. Carbon deposition was observed with CO for all Fe coverages. Measurement of the fine structure above the carbon K-edge suggests that the types of carbide formed depend on the iron coverage; one carbide has a short CFe distance of 1.78 Å and the other a distance of 2.06 Å (high metal coverage).  相似文献   

6.
The feasibility of determining the elemental composition, chemical state, and element distribution across the depth in a subsurface region using the computer simulation of the electron inelastic scattering cross section is demonstrated with iron layers on silicon substrates. Analysis is carried out based on the dielectric theory and on the experimental determination of the product of the electron inelastic mean free path by the inelastic scattering cross section from reflected electron energy loss spectra.  相似文献   

7.
In order to achieve an accurate understanding of the crystal structure of 6-line ferrihydrite (6LFh) and ferritin molecule cores within a human liver biopsy using transmission electron microscopy (TEM), electron beam damage should be considered. For the case of 6LFh, the electron energy loss near-edge structure (ELNES) of core ionisation edges in the electron energy loss spectrum (EELS) combined with multiple linear least-square (MLLS) fitting of reference spectra together with analysis of selected area electron diffraction (SAED) patterns suggests that the iron in 6LFh is solely octahedrally coordinated Fe3+. With increasing electron dose, an increasing percentage of this octahedrally coordinated Fe3+ migrates to tetrahedral sites. When the dose exceeds 3 x 10(8) electrons/nm2, Fe2+ is found to be present in the material. This method also indicates that the iron in ferritin molecule cores within a human liver biopsy is the same as in 6LFh, entirely Fe3+ in octahedral coordination with oxygen. Again the percentage of octahedrally coordinated Fe3+ decreases as the accumulated electron dose increases and Fe2+ is produced in the liver biopsies when the electron dose exceeds 10(6)electrons/nm2.  相似文献   

8.
The interaction of oxygen and nitrogen with a clean polycrystalline iron surface was investigated using Auger electron spectroscopy, photoelectron spectroscopy and electron energy loss spectroscopy. Further evidence for the dissociative nature of adsorbed nitrogen on iron is shown by the photoelectron spectroscopy data in conjunction with preliminary thermal desorption work. The first electron energy loss data for the nitrided iron surface is presented and shown to be very similar to that for the clean and oxidized surfaces.  相似文献   

9.
中国细白瓷历经数百年的发展,使得优质粘土矿物资源的紧缺形势日益严峻,对中低品质矿物的提纯和利用越来越受到关注。其中,劣质矿产的除杂即是提高其品质要解决的重点问题。铁杂质是陶瓷生产中最主要的有害物质,对Fe的赋存方式进行探究可为除杂技术的应用建立相关基础。目前,对中低品质的粘土矿物中铁杂质赋存形式的研究仍较少。广东省红粘土分布广、储存量大,但其较高含量的Fe降低了其使用价值,限制其作为优质资源进一步利用。该研究对中国广东省梅州市的低品质红粘土中铁杂质和其赋存形式进行分析。Fe在矿物中的赋存形式复杂,结晶程度较低,采用传统的测试方法难以对其进行有效地分析。因此,通过拣选红粘土原矿中红、黄、灰绿三种杂质组分,并分别进行淘洗和过筛法分离粘土矿物。采用X射线荧光光谱、扫描电镜和能谱、透射电镜和选区电子衍射、可见光-近红外吸收光谱仪及可见光一阶导数光谱法对其矿物组成、化学成分、显微结构及谱学特征进行测试分析,探讨Fe元素的赋存形式。结果表明:Fe元素是影响该红土矿外观颜色的最主要元素。所有样品中粘土矿物主成分为高岭石和伊利石。红色和黄色杂质组分中,Fe元素主要以赤铁矿-针铁矿的自由团聚体夹杂或附着于片状粘土矿物表面;灰绿组分中Fe元素主要以Fe-Mg云母的结构铁形式存在。研究发现,在对红粘土矿物的分离过程中,Fe杂质以自由铁和结构铁的形式随着粘土矿物一同被选出。该研究结果有助于南方红粘土提纯方法的选择,并有助于提高低品位粘土的处理效率和质量。  相似文献   

10.
Ultrathin bcc iron films grown epitaxially on W(110) have been investigated by means of angle and spin resolving photoelectron spectroscopy. The electron spin polarization, spin resolved intensities and corresponding band structure have been experimentally investigated in dependence of the film thickness, exciting photon energy and variation of the photoelectron detection angle. Additionally, photoemission calculations for bulk iron have been performed in the framework of a relativistic one-step formalism. The comparison between measured and calculated spectra turns out to be in very good agreement for different excitation energies as well as for different angles of emission.  相似文献   

11.
To determine the electron energy spectra for medical accelerator effectively, we investigate a nonlinear programming model with several nonlinear regression algorithms, including Levenberg-Marquardt, Quasi-Newton, Gradient, Conjugate Gradient, Newton, Principal-Axis and NMinimize algorithms. The local relaxation-bound method is also developed to increase the calculation accuracy. The testing results demonstrate that the above methods could reconstruct the electron energy spectra effectively. Especially, further with the local relaxationbound method the Levenberg Marquardt, Newton and NMinimize algorithms could precisely obtain both the electron energy spectra and the photon contamination. Further study shows that ignoring about 4% photon contamination would increase error greatly, and it also inaccurately makes the electron energy spectra ‘ddrift' to the low energy.  相似文献   

12.
Alloys of the systems Fe–Al (mixable over the whole concentration range) and Fe–Mg (insoluble with each other) were produced by implantation of Fe ions into Al and Mg, respectively. The implantation energy was 200 keV and the ion doses ranged from 1 × 1014 to 9 × 1017cm-2The obtained implantation profiles were determined by Auger electron spectroscopy depth profiling. Maximum iron concentrations reached were up to 60 at.% for implantation into Al and 94 at.% for implantation into Mg. Phase analysis of the implanted layers was performed by conversion electron Mössbauer spectroscopy and X‐ray diffraction. For implantation into Mg, two different kinds of Mössbauer spectra were obtained: at low doses paramagnetic doublets indicating at least two different iron sites and at high doses a dominant ferromagnetic six‐line‐pattern with a small paramagnetic fraction. The X‐ray diffraction pattern concluded that in the latter case a dilated αiron lattice is formed. For implantation into Al, the Mössbauer spectra were doublet structures very similar to those obtained at amorphous Fe–Al alloys produced by rapid quenching methods. They also indicated at least two different main iron environments. For the highest implanted sample a ferromagnetic six‐line‐pattern with magnetic field values close to those of Fe3Al appeared.  相似文献   

13.
The surface properties of the active ingredients in AMI colloidal, superparamagnetic iron oxide magnetic resonance (MR) contrast agents are described. Scanning electron microscopy/energy dispersive X-ray elemental analyses and diffuse reflectance Fourier transform infrared spectroscopy (FTIR) spectra of ferumoxsil (AMI-121 drug substance) were consistent with the presence of a monolayer of H2NCH2CH2NHCH2CH2CH2Si(O)3 siloxane monomer or dimer. The X-ray photoelectron spectra (XPS) of ferumoxsil are also consistent with complete coverage of the iron oxide surface with a monolayer of siloxane. The static secondary ion mass spectra (SSIMS) of ferumoxsil showed that the siloxane film is covalently bonded (i.e., SiOFe bonds) to the iron oxide surface. The FTIR of ferumoxides (AMI-25) and Ferumoxtran (AMI-227) showed only adsorbed dextran. The XPS spectra of the dextrancoated colloids showed that Ferumoxtran has a thicker layer of dextran than ferumoxides iron oxide particles (∼5 and ∼3 nm, respectively). The SSIMS spectra of these dextran-coated colloids showed only low mass fragments due to the adsorbed dextran. The nature of the interactions of the dextran coating with the iron oxide surfaces of ferumoxides and Ferumoxtran is discussed.  相似文献   

14.
采用水热法成功制备了不同掺杂浓度的Zn1-2xFexNixO(x=0,0.025,0.05,0.1)稀磁半导体材料,利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线能量色散分析仪(XEDS)对样品进行表征,并结合拉曼(Raman)光谱、光致发光光谱(PL)和振动样品磁强计(VSM)研究样品的光学性能和磁学性能。结果表明,水热法制备的样品具有结晶性良好的纤锌矿结构,没有杂峰出现,形貌为纳米棒状结构,分散性良好。Fe2+、Ni2+是以替代的形式进入ZnO晶格中,Fe和Ni的掺杂使得晶体中的缺陷和应力增加,拉曼光谱峰位发生红移,光致发光光谱发生猝灭现象。另外,共掺杂样品在室温条件下存在明显的铁磁性,饱和磁化强度随着掺杂量的增加而增强。  相似文献   

15.
用溶胶-凝胶法制备铁、氮共掺杂纳米TiO2凝胶,浸渍-提拉法将其镀膜于载玻片表面,经干燥、煅烧,制得Fe-TiO2-xNr复合膜;用XRD,SEM,XPS及UV-Vis对镀膜样品进行了表征.XRD分析表明,Fe-TiO2-xNr膜为锐钛矿结构,少数氮原子替代了TiO2晶格中的氧;SEM照片说明,构成膜的粒子分散均匀,形貌一致,粒径约19 nm:UV-Vis漫反射光谱显示,Fe3+掺杂可使复合膜对可见光的响应红移至740nm处;XPS图谱证明,铁、氮的掺入降低了Ti(2p3/2)电子结合能,从而拓宽了TiO2在可见光区的吸收范围.以光催化降解苏丹红I为模型反应,比较了不同掺杂样品的光催化活性,结果表明,当掺杂的Fe3+相对于Ti4-1的原子比达到0.4%时,复合膜表现出最佳催化性能,4 h后对苏丹红I的降解率达到97%.方法制备的氮和适量铁共掺杂Fe-TiO2-xNr复合膜能协同提高TiO2对可见光的响应能力及光催化活性,在污水处理领域具有潜在的应用价值.  相似文献   

16.
XPS valence band spectra of iron, cobalt, palladium and platinum are reported. They show good agreement with theoretical density of states curves that have been corrected for instrumental resolution, electron-hole interaction, matrix element modulation, lifetime of the photohole and inelastic electron electron scattering.  相似文献   

17.
We analyze in detail the results of experimental investigations of the evolution of the thermal vibration spectra for iron atoms in iron monosilicide FeSi depending on two external parameters, viz., temperature T (in the range 46–297 K at pressure P = 0.1 MPa) and pressure P (in the range 0.1 MPa–43 GPa at temperature T = 297 K), obtained by nuclear inelastic scattering of synchrotron radiation. The decrease of the atomic volume is accompanied by a rearrangement of the phonon spectrum, which is manifested, in particular, in the splitting of the low-energy peak in the spectrum and in an increase of the energy for all phonons. The changes of the average energy of the iron atom vibrational spectrum and of the Debye energy with decreasing atomic volume are analyzed. Different versions of FeSi electron spectrum variation, which can be used to explain the observed phonon anomalies, are considered.  相似文献   

18.
A monochromated (scanning) transmission electron microscope was used to analyze individual sub-micron grains within interplanetary dust particles (IDP). Using low-loss and core-loss electron energy-loss spectroscopy, we analyzed fluid and gas inclusions within vesiculated alumosilicate grains. It is shown that nanometer-sized vesicles contain predominantly molecular oxygen (O(2)) beside a small fraction of H(2)O. Low-loss spectra reveal the Schumann-Runge continuum peaking at 8.6 eV and absorption bands reflecting vibrational excitation states of O(2) molecules between the first (12.1 eV) and second (16.1 eV) ionization energy. The presence of oxygen gas is supported by the corresponding oxygen K-edge fine structure. The valence state of Fe in iron-oxide within the IDP was also studied. Low-loss spectra provide qualitative information about the oxidation state of iron consistent with the Fe(2+)/Fe(3+) ratio quantitatively derived from the Fe L(2,3) edge.  相似文献   

19.
Apart from two peaks caused by bulk and surface plasmons, four or five peaks (depending on the crystal type) of electron energy losses due to inter- and intraband electron transitions are observed in the investigation of the electron energy loss spectra for metals (Cu, Ag). A comparative analysis of the spectra for Cu or Ag films reveals a shift of bulk plasmon loss peaks to higher values for polycrystals, as in the case of transition metals and semiconductors. In a study concerning the orientation dependence of the energy loss spectra (ELS) for electrons scattered from the copper and silver surface, the anisotropy of the bulk plasmon peak is found when the incident beam’s polar angle or the sample’s azimuthal angle are altered. The anisotropy of the primary electron energy loss for plasmon excitation is also observed, depending on the sample orientation relative to the direction incident electrons. The energy losses are found to increase with an increasing atomic packing density of planes and crystal transparency relative to the incident beam.  相似文献   

20.
Two satellite peaks have been observed on the high energy side of the Be KVV Auger peak. The lower energy satellite is attributed to coupling of energy from bulk plasmon de-excitations with Auger electrons, and the higher energy event to Auger electrons ejected from Be atoms with doubly ionized K levels. Following oxidation, the ionization loss spectra of BeO were observed to have structure which is interpreted as being related to the density of unfilled electron states above the BeO valence band. In addition, the characteristic loss and the low energy (“true secondary”) spectra of Be and BeO were determined. Peaks in these spectra are discussed in terms of characteristic energies related to excited electron states in the solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号