首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this study, a qualitative and quantitative analysis using high‐performance liquid chromatography coupled to electrospray ionization and quadrupole time‐of‐flight mass spectrometry was performed for the quality control of Bu‐Shen‐Yi‐Qi‐Fang, a traditional Chinese formula used for asthma. Thirty‐four compounds, including flavonoids, isoflavonoids, triterpenoid saponins, and iridoid glycosides were identified or tentatively characterized by comparing their retention times and mass spectra with those of authentic standards or literature data. Sixteen components were considered as the main bioactive constituents of Bu‐Shen‐Yi‐Qi‐Fang and they were chosen as the chemical markers in quantitative analysis, including catalpol, leonuride, calycosin‐7‐O‐β‐d ‐glucoside, hyperoside, acteoside, formononetin‐7‐O‐β‐d ‐glucoside, epimedin A, calycosin, icariin, epimedin B, epimedin C, formononetin, astragaloside IV, astragaloside II, baohuoside‐I, and astragaloside I. The total run time was 20 min. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.99) within the test ranges. The relative standard deviations for intra‐ and inter‐day precisions were below 3.9 and 11.7%, respectively. The accuracy was evaluated by the recovery test within the range of 89.20–110.71% with the relative standard deviation < 4.8%. The sample was stable for at least 48 h at 4°C. The results showed that the new approach was effective for the quality control of Bu‐Shen‐Yi‐Qi‐Fang.  相似文献   

2.
Formononetin‐7‐O‐β‐d ‐glucoside has been proved to have significant anti‐inflammatory effect. To evaluate its rat pharmacokinetics, a rapid, sensitive, and specific liquid chromatography–tandem mass spectrometry method has been developed and validated for the quantification of formononetin‐7‐O‐β‐d ‐glucoside and its main metabolite formononetin in rat plasma. Samples were pretreated using a simple protein precipitation and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water and acetonitrile both containing 0.1% formic acid. Both analytes were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. The assay showed wide linear dynamic ranges of both 0.10–100 ng/mL, with acceptable intra‐ and inter‐batch accuracy and precision. The lower limits of quantification were both 0.10 ng/mL using 50 μL of rat plasma for two analytes. The method has been successfully used to investigate the oral pharmacokinetic profiles of both analytes in rats. After oral administration of formononetin‐7‐O‐β‐d ‐glucoside at the dose of 50 mg/kg, it was rapidly absorbed in vivo and metabolized to its metabolite formononetin. The plasma concentration‐time profiles both showed double‐peak phenomena, which would be attributed to the strong enterohepatic circulation of formononetin‐7‐O‐β‐d ‐glucoside.  相似文献   

3.
The purpose of this study was to compare the effects of different chromatographic columns for the separation of seven flavonoids. Four different stationary phases are available, including bridged ethyl hybrid, BEH and the same hybrid phase modified with 2‐ethylpyridine, CSH fluorophenyl, and HSS C18 SB. The analytes included calycosin, genistein, medicarpin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, formononetin‐7‐O‐β‐d ‐glucoside, and liquiritigenin. The CSH fluorophenyl column was determined to be the most suitable and provided the fastest separation within 17 min using gradient elution with carbon dioxide as the mobile phase and methanol as the co‐solvent. Good peak shapes were obtained, and the values of the peak asymmetry were close to 1.0 for all of the flavonoids. The resolution was more than 1.41 for all of the separated peaks. Baseline separation on the optimal columns was achieved by changing the co‐solvent type and adjusting the temperature and pressure. Quantitative performance was evaluated under optimized conditions, and method validation was accomplished. The validation parameters, such as linearity, sensitivity, precision, and accuracy, were satisfactory. Good repeatability of both peak area (relative standard deviation <1.02%) and retention time (relative standard deviation <0.88%) was observed. The optimized chromatographic methods were successfully used for the determination of seven flavonoids in Radix astragali . The sensitivity was sufficient for the analysis of real samples.  相似文献   

4.
A rapid, sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous quantification of the five main bioactive components, calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin in rat plasma after oral administration of Shenqi Wuwei chewable tablets. Plasma samples were extracted using solid‐phase extraction separated on a CEC18 column and detected by MS with an electrospray ionization interface in multiple‐reaction monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r > 0.995. The method had a lower limit of quantitation of 0.1, 0.02, 0.1, 1 and 0.1 ng/mL for calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin, respectively. Intra‐ and inter‐day precisions (relative standard deviation) for all analytes ranged from 0.97 to 7.63% and from 3.45 to 10.89%, respectively. This method was successfully applied to the pharmacokinetic study of the five compounds in rats after oral administration of Shenqi Wuwei chewable tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A nanoliquid chromatographic method for the stereoisomer separation of some flavanone aglycones and 7‐O‐glycosides has been proposed employing a C18 capillary column and a chiral mobile‐phase additive such as cyclodextrin. The chiral separation of eriodictyol, naringenin, and hesperitin was obtained by addition of carboxymethyl‐β‐cyclodextrin to the mobile phase, whereas eriocitrin, naringin, narirutin, and hesperidin diastereoisomers were resolved by using sulfobutyl ether‐β‐cyclodextrin. The influence of the composition of the mobile phase, the length of the capillary column, and the flow rate on the chiral recognition were investigated. At optimum conditions, baseline separation for the selected aglycones and glycosylated forms were achieved with a mobile phase consisting of 50 mM sodium acetate buffer pH 3 and 30% methanol containing 20 mM of carboxymethyl‐β‐cyclodextrin and 10 mM of sulfobutyl ether‐β‐cyclodextrin, respectively. Precision, linearity, and sensitivity of the method were tested. Limits of detection and quantification for the studied flavanone glycosides were in the range 1.3‐2.5 and 7.5‐12.5 µg/mL, respectively. The method was used for the determination of the diastereomeric composition of the flavanone‐7‐O‐glycosides in Citrus juices after solid‐phase extraction procedure.  相似文献   

6.
The enantio‐separations of eight 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (2‐APA NSAIDs) were established using reversed‐phase high‐performance liquid chromatography with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP‐β‐CD and column temperature on retention and enantioselective separation were investigated. With 2‐APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP‐β‐CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC‐ODS (150 × 4.6 mm i.d., 5 μm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0–5.5, 20 mM) containing 25 mM HP‐β‐CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2‐APA NSAIDs in an enantioselective skin permeation study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A β‐cyclodextrin (β‐CD) bonded phase with diamine‐s‐triazine moiety was prepared. The separation and retention behavior of the isomers of five aromatic carboxylic acids, including toluic acid, aminobenzoic acid, nitrobenzoic acid, hydroxybenzoic acid, and naphthoic acid were investigated by a high‐performance liquid chromatography (HPLC) using the β‐CD bonded phase prepared. The influence of mobile phase pH in the range of 2.7‐3.6 on the retention of these analytes was examined. The isomers of the aromatic carboxylic acids, with the exception of nitrobenzoic acid, were optimally and effectively separated at pH 2.7, while the three isomers of nitrobenzoic acid could be well separated at pH 3.3. Compared with the chromatographic results obtained previously on the amine‐s‐triazine‐β‐CD bonded phase, the retention factors of the isomers of aromatic carboxylic acid on the diamine‐s‐triazine‐β‐CD bonded phase increase to a relatively much greater extent. Thus, the functionality of the spacer arm of the bonded phase playing an important role in the retention of aromatic carboxylic acid isomers is demonstrated. The results also imply that the hydrogen‐bonding interaction and the mechanism of anion exchange sorption as well may contribute significantly to the retention mechanisms.  相似文献   

8.
用氢谱、红外光谱、X-射线粉末衍射、热分析、元素分析等测试方法研究了Veronicafolin (3,5,4′-三羟基-6,7,3′-三甲氧基黄酮) 和β-环糊精 (β-CD) 的固体包合物的谱学特征。元素分析结果显示形成Veronicafolin-β-CD·20H2O包合物,其中C:39.58%, H: 5.75%,表明包合物中主客体比为1∶1。该包合类型属于AL-型。通过紫外-可见分光光度法研究了在羟丙基-β-环糊精(HP-β-CD)的存在下Veronicafolin的相溶解度曲线,测得校正曲线为y = 24148x + 0.0075 (r=0.9999),相溶解曲线为y=0.4738x-2.0×10-7 (r=0.9490),包结平衡常数Ks为4.5×106mol-1。HP-β-CD提高了黄酮醇Veronicafolin的溶解度。  相似文献   

9.
Ibuprofen (Ibu) and β‐cyclodextrin (βCD) and its derivative (hydroxypropyl‐β‐cyclodextrin, HPβCD) complexes spatial geometry information were studyed. Firstly, phase solubility experiment was carried out for S‐(+)‐ibuprofen (SIbu) and cyclodextrins complex. The apparent stability constant (Kc) for 1:1 complexes are 1065 M‐1 (βCD) and 1476 M‐1 (HPβCD) respectively. Secondly, 1H NMR and two‐dimensional rotating‐frame overhauser effect spectroscopy (2D ROESY) were used for binding study, and confirmed that benzene ring of Ibu is deeply included into the cavity and racemic Ibu (RSIbu) can be discriminated by βCD or HPβCD. Finally, docking model was given by theoretical investigation. The model with ‐4.77 kcal/mol binding energy matches experimental structure.  相似文献   

10.
A rapid, sensitive and accurate UPLC‐MS/MS method was developed for the simultaneous quantification of components of Huangqi decoction (HQD), such as calycosin‐7‐O‐β‐d ‐glucoside, calycosin‐glucuronide, liquiritin, formononetin‐glucuronide, isoliquiritin, liquiritigenin, ononin, calycosin, isoliquiritigenin, formononetin, glycyrrhizic acid, astragaloside IV, cycloastragenol, and glycyrrhetinic acid, in rat plasma. After plasma samples were extracted by protein precipitation, chromatographic separation was performed with a C18 column, using a gradient of methanol and 0.05% acetic acid containing 4mm ammonium acetate as the mobile phase. Multiple reaction monitoring scanning was performed to quantify the analytes, and the electrospray ion source polarity was switched between positive and negative modes in a single run of 10 min. Method validation showed that specificity, linearity, accuracy, precision, extraction recovery, matrix effect and stability for 14 components met the requirements for their quantitation in biological samples. The established method was successfully applied to the pharmacokinetic study of multiple components in rats after intragastric administration of HQD. The results clarified the pharmacokinetic characteristics of multiple components found in HQD. This research provides useful information for understanding the relation between the chemical components of HQD and their therapeutic effects.  相似文献   

11.
The purpose of this study was to simultaneously investigate the pharmacokinetics of five bioactive compounds in rat plasma after oral administration of Buyang Huanwu decoction (BYHWD) using high‐performance liquid chromatography coupled with mass spectrometry (HPLC‐MS). The separations were performed on a Thermo Hypersil Gold C18 analytical column (50 × 2.1 mm, 3 µm) with the column temperature kept at 30°C. The quantitative analysis was performed using a quadrupole mass spectrometer detector operated under selected ion monitoring mode. A linear gradient elution of A (0.1% formic acid solution) and B (100% acetonitrile) was used at a flow rate of 0.2 mL/min. The method was validated within the concentration ranges 1.8–450, 6.0–1500, 2.0–500, 1.2–300 and 1.2–150 ng/mL for paeoniflorin, calycosin‐7‐O‐β‐d ‐glucoside, ononin, calycosin and formononetin, respectively. The calibration curves were linear with correlation coefficients > 0.99. The lower limits of quantitations were < 6.0 ng/mL. The method was further applied to assess the pharmacokinetics of the five bioactive constituents of BYHWD in rat plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
As an aid for structure elucidation of new steviol glycosides, reversed‐phase C18 high‐performance liquid chromatography method was developed with several previously characterized diterpene glycosides, to identify known and detect novel aglycone‐C13 oligosaccharide moieties and indirectly identify C‐19 interlinkages. Elution order of several diterpene glycosides and their aglycone‐C13 oligosaccharide substituted with different sugar arrangements were also summarized. Comparison of the retention time of a product obtained after alkaline hydrolysis with the aglycone‐C‐13 portions of known compounds reported herein allowed us to deduce the exact positions of the sugars in the C‐13 oligosaccharide portion. The elution position of several steviol glycosides with an ent‐kaurene skeleton was helpful to describe an identification key. Two previously uncharacterized diterpene glycosides together with two known compounds were isolated from a commercial Stevia rebaudiana leaf extract. One was found to be 13‐[(2‐O‐β‐d ‐xylopyranosyl3‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl)oxy]ent‐kaur‐16‐en‐19‐oic acid‐(2‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl) ester (rebaudioside V), whereas the other was determined to be 13‐[(2‐O‐β‐d ‐xylopyranosyl3‐O‐β‐d ‐glucopyranosyl‐β‐d‐ glucopyranosyl)oxy]ent‐kaur‐16‐en‐19‐oic acid‐(2‐O‐α‐l ‐rhamnopyranosyl‐3‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl) ester (rebaudioside W). Previously reported compounds were isolated in gram quantities and identified as rebaudioside J and rebaudioside H. In addition, a C‐19 sugar‐free derivative was also prepared from rebaudioside H to afford rebaudioside H1. Chemical structures were partially determined by the high‐performance liquid chromatography method and unambiguously characterized by using one‐dimensional and two‐dimensional nuclear magnetic resonance experiments.  相似文献   

13.
In this work, the changes in isoflavone levels and the expression of genes involved in their biosynthesis were studied in two Astragalus by UPLC ‐MS and real‐time PCR after 10 days of UV ‐B treatment (λ max = 313 nm, 804 J m−2). Isoflavones were significantly induced by UV ‐B irradiation. The influence might be activated by the regulation of these target genes. Our results indicate that (1) the resistance of Astragalus membranaceus might not be as good as Astragalus mongholicus in the enhanced UV ‐B radiation environment; (2) the enhanced accumulation of calycosin and calycosin‐7‐glucoside with UV ‐B treatment in roots of A. mongholicus might be derived from formononetin which is synthesized in the leaves; (3) the glycosylation process could be stimulated and activated by the enhanced UV ‐B radiation in both A. mongholicus and A. membranaceus . In other words, glycosylation of isoflavones might play a crucial role for two Astragalus plants in response to UV ‐B stress. Overall, this study offered a feasible elicitation strategy to understand the accumulation pattern of isoflavone in A. mongholicus and A. membranaceus , and also provided a reference for the changes in isoflavone levels of Astragalus in UV ‐B enhanced environment in the future.  相似文献   

14.
Anthraquinone glycosides, such as chrysophanol 1‐O‐β‐d‐ glucoside, chrysophanol 8‐O‐β‐d‐ glucoside, and physion 8‐O‐β‐d‐ glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above‐mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1‐O‐β‐d‐ glucoside and chrysophanol 8‐O‐β‐d‐ glucoside. This study demonstrated an efficient strategy based on preparative high‐performance liquid chromatography and high‐speed countercurrent chromatography for the separation of the above‐mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf.  相似文献   

15.
The antimalarial drug primaquine (PQ) and its contaminant, the positional isomer quinocide (QC) have been successfully separated using capillary electrophoresis with either β‐cyclodextrin (β‐CD) or 18‐crown‐6 ether (18C6) as chiral mobile phase additive. The interactions of the drugs with cyclodextrins and 18C6 were studied by the semiempirical method (Parametric Model 3) PM3. Theoretical calculations for the inclusion complexes of PQ and QC with α‐CD, β‐CD and 18C6 were performed. Data from the theoretical calculations are correlated and discussed with respect to the electrophoretic migration behavior. More stable complexes are predicted for the PQ–β‐CD and PQ–18C6 complexes. The coelution of PQ and QC when α‐CD was used as buffer additive can be explained by their comparable stabilities of the inclusion complex formed, while significant differences in the complexation stabilities of the drugs with β‐CD is responsible for their separation. The stronger hydrogen bonding in PQ–18C6 system is responsible for the separation between PQ and QC when 18C6 was used as chiral mobile phase additive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A novel one‐step approach is reported to prepare thermosensitive hydrogels simply by using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD)/glycidyl methacrylate (GMA)/N‐isopropylacrylamide (NIPAM) system. From GMA and HP‐β‐CD, HP‐β‐CD/GMA inclusion complex was prepared and identified with NMR, FTIR, and UV‐vis spectroscopies. GMA in the form of HP‐β‐CD/GMA complex was copolymerized with NIPAM in water with K2S2O8 as initiator, yielding hydrogels designated as poly(NIPAM‐CD‐GMA). The inclusion of CD in the hydrogels was confirmed by FTIR spectroscopy. The contents of CD and GMA placed considerable influence on the swelling ratio and temperature‐sensitivity of the produced hydrogels. The hydrogels bearing CD moieties showed higher swelling ratio and temperature‐sensitivity when compared with that without CD. The porous structure of the hydrogels containing CD was observed in the SEM images. Relevant mechanism of the ring‐opening reaction of epoxide groups in GMA, the subsequent crosslinking reactions and the formation of hydrogels containing CD moieties were proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2193–2201, 2008  相似文献   

17.
Nine glycosides ( 1–9 ) were characterized from the n‐butanol‐soluble fraction of the ethanolic extract of the leaves of Sageretia thea by the general approach. Among these, Compounds 6 and 7 were identified as a mixture. Application of HPLC‐SPE‐NMR in two selected fractions led to the separation of this mixture and the characterization of three additional minors ( 10–12 ). Among these, 7‐O‐methylmyricetin 3‐O‐α‐l ‐arabinofuranoside ( 8 ) is a new natural product and eight compounds, i.e. glucofragulin A ( 1 ), quercetin‐3‐O‐α‐l ‐arabinopyranoside ( 5 ), 3‐O‐β‐d ‐galactopyranoside ( 6 ), 3‐O‐β‐d ‐glucopyranoside ( 7 ), and 3‐O‐α‐l ‐arabinofuranoside ( 11 ), myricetin‐3‐O‐α‐l ‐arabinofuranoside ( 9 ) and 3‐O‐β‐d‐glucopyranoside ( 10 ), and quercetrin ( 12 ), are found for the first time from the title plant.  相似文献   

18.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

19.
Detailed chemotaxonomic studies were undertaken to establish the qualitative profile and real amounts of the pharmacologically active isoflavone aglycones genistein, daidzein, formononetin, and biochanin A in aerial parts of thirteen Trifolium L. (clover) species, native to Poland. A newly elaborated micropreparative technique – SPE – on BakerBond octadecyl, cyclohexyl, and phenyl cartridges was used in combination with ultrasound‐assisted extraction for isolation of isoflavone aglycones from hydrolyzed samples. The effectiveness of all three SPE sorbents in the purification of plant extracts was compared and very high recoveries (>96%) were documented for four isoflavones. Classical photodiode‐array and very sensitive fluorescence detection, coupled with reversed‐phase high‐performance liquid chromatography (RP‐HPLC), were employed to obtain the most reliable qualitative and quantitative results. Chemotaxonomic differences combined with flower color variability were demonstrated within thirteen clover species. Concentration levels of particular isoflavones in ten Trifolium species possessing flowers with white, pink, or purple‐red corolla ranged from ∼︁3 to ∼︁3300 μg/g dry weight, while in three yellow flowering clovers (T. aureum, T. dubium, and T. campestre) isoflavone compounds have not been detected at all. RSD values, determined for intra‐ and inter‐day precision of the quantitative results, were not higher than 6.2% and 7.1%, respectively.  相似文献   

20.
This work concentrates on extending the utilization of multiple dual mode (MDM) counter‐current chromatography in chiral separations. Two aromatic acids, 2‐(6‐methoxy‐2‐naphthyl)propionic acid (NAP) and 2‐phenylpropionic acid (2‐PPA), were enantioseparated by MDM counter‐current chromatography using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral selector. The two‐phase solvent systems consisting of n‐hexane/ethyl acetate 0.1 mol/L phosphate buffer pH 2.67 containing 0.1 mol/L HP‐β‐CD (7.5:2.5:10 for NAP and 7:3:10 for 2‐PPA, v/v/v) were used. Conventional MDM and modified MDM were compared according to peak resolution under current separation mechanism. The influence of elution time after the first‐phase inversion and number of cycles for MDM were investigated. Peak resolution of NAP and 2‐PPA increased from 0.62 to 1.05 and 0.72 to 0.84, respectively, using optimized MDM conditions. Being an alternative elution method for counter‐current chromatography, MDM elution greatly improved peak resolution in chiral separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号